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Abstract

In recent years, well-designed bus rapid transit (BRT) systems have become a real
alternative to more expensive rail-based public transportation systems around the world.
However, once the BRT system is operational, its success often depends on the routes
offered to passengers. Thus, the Bus Rapid Transit Route Design Problem (BRTRDP)
is the problem of finding a set of routes and frequencies that minimizes the operational
and passenger costs (travel time) while simultaneously satisfying the system’s technical
constraints, such as meeting the demands for trips, bus frequencies, and lane capacities.
To address this problem, we propose a mathematical formulation of the BRTRDP as a
mixed-integer program (MIP) with an underlying network structure. However, because
of the vast number of routes, solving the MIP via branch and bound is out of reach
for most practical instances. Hence, we propose a decomposition strategy that, given
a certain set of routes, decouples the route selection decisions from the BRT system
performance evaluation. The latter evaluation is done by solving a linear optimization
problem using a column generation scheme. We embedded this decomposition strategy
in a hybrid genetic algorithm (HGA) and tested it in 14 instances ranging from 5 to
40 stations with different BRT system topologies. The results show that in 8 out of 14
problems, the HGA was able to obtain a solution that is provably optimal within 0.20%.
Additionally, in 4 out of 14 instances, HGA obtained the optimal solution.

Key words: bus rapid transit systems; public transit network design; bus routing; urban
logistics; matheuristics; genetic algorithms.

1 Introduction

A Bus Rapid Transit (BRT) system is a flexible, rubber-tired, high-capacity, low-cost public
transit solution that is a competitive alternative to more expensive rail-based systems. Most
specifically, BRT systems combine specialized buses, dedicated lanes, stations, off-vehicle fare
collection, and intelligent transportation systems (ITS) into an integrated system with a strong
identity under a unique image Danaher et al.| (2007)), Levinson et al.| (2003).
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The re-emergence of BRT is a worldwide initiative, with cities ranging from small to
megasized adopting such systems. Just to name a few, in North America, BRT systems are
in use in Los Angeles (US), Boston (US), and Ottawa (Canada); in Europe, in Leeds (UK)
and Rouen (France); in Australia, in Sydney and Adelaide; and in South America, in Quito
(Ecuador), Sao Paulo (Brazil), and Bogotd (Colombia). Indeed, a recent study by Hidalgo
and Gutiérrez (2013) reports the application of 120 BRT systems around the world, covering
in total more than 4,300 km in bus lanes, and serving about 28 million passengers per day.

One of the most highly recognized BRT implementations among transportation planners is
TransMilenio [TransMilenio| (2013)), Weinstock et al.| (2011)), which serves Bogotd, a city with
7,000,000 inhabitants citymayors.com (2013)). By September of 2012, the system comprised
an 87-km network of exclusive lanes, 115 stations, 1,392 articulated and bi-articulated buses
(with 160- and 260-passenger capacity, respectively), and 90 routes. Already carrying over
1.5 million passengers per day by late 2012, TransMilenio was moving more than 198,000
passengers per peak hour by 2012, a volume normally associated with heavy rail transit
modes. In addition, TransMilenio had increased average public transit travel speeds from
15 km/h to 27 km/h |Cain et al.| (2006]), TransMilenio| (2013). The great success of this BRT
system has inspired other cities in Colombia and around the world to emulate the TransMilenio
model (Cain et al.| (2006)). In Colombia alone, the same model has been implemented by small-
scale BRT systems in Barranquilla (TransMetro), Bucaramanga (MetroLinea), Cali (Mio),
Cartagena (TransCaribe), Medellin (MetroPlis), and Pereira (MegaBus).

Nonetheless, despite the overwhelming success of BRT systems like TransMilenio, once in
operation, they are subject to public complaints such as overcrowding and long wait times
Cain et al| (2006), Camara de Comercio de Bogota (2010). In fact, a former TransMilenio
operations manager claimed back in 2003 that the expected demand and passenger behavior
of any BRT system in the planning stage often deviates from the system when it is in place
and fully operational McAllister| (2003)). This mismatch between the planned and operational
phases requires a thorough revision of the planned routes using a real origin-destination (OD)
trip distribution matrix.

Thus, even though this research focuses on designing (or redesigning) BRT system routes,
planning and operating any public transportation system raises a sequence of interrelated
problems that must be tackled |Ceder and Wilson| (1986), [Farahani et al.| (2013), |Guihaire and
Hao (2008)), Kepaptsoglou and Karlaftis| (2009), |Schobel (2012). At the highest level of the
hierarchy, the network design problem deals with deciding the physical layout of the trans-
portation system. Laporte et al. (2002) solved the problem of deciding the best locations for
the stations in a predesigned alignment (line) of a rapid transit system. Their approach is
based on a longest path algorithm and a careful estimation of the catchment area. Likewise,
Bruno et al.| (2002)) modeled the problem of locating a rapid transit alignment by maximizing
the covered population subject to interstation spacing constraints. To solve the mathematical
formulation, they proposed a two-phase algorithm that (1) constructs the alignment and (2)
improves it. Even though designed for the single-alignment problem, their method could be
used as a building block for designing rapid transit systems with multiple alignments. As
a methodology for integrating the station location problem with that of connecting stations



through a small number of alignments, Laporte et al.| (2007) proposed an integer program
that includes the construction cost as a constraint, which they illustrated using small six-
and nine-node networks. |Marin (2007) extended this model by allowing it to choose a vari-
able number of alignments without predetermined origins and destinations. Unfortunately,
however, their solution does not seem to scale well and was only tested on instances of up
to nine nodes. In a subsequent study, Marin and Jaramillo (2008]) incorporated an acceler-
ated Benders decomposition technique and were able to solve instances of up to 24 nodes.
More recently, [Laporte et al.| (2011)) introduced a mixed integer optimization problem aimed
to design robust transportation systems. The objective of their approach is to guarantee the
existence of useful and fast routes even in the event of arc failures. They tested their approach
by designing the routes for a nine-station system.

After having designed the physical network (e.g., station locations and alignments), the
highest impact problem is that of route design. In the top-down approach of |Ceder and
Israeli (1992)), the solution of this problem (i.e., the determination of a good set of bus routes)
has a tremendous impact on subsequent tactical problems like bus frequency determination,
timetabling, and bus and personnel allocation. These tactical problems, influenced by the
designed routes and solved on a daily basis, have a direct impact on public opinion about
the BRT system and the financial structure of the bus operators. Very often, cities adopting
a BRT system lack sufficient room for expansion or simply find enlarging the network cost
prohibitive, which not only makes the route design problem even more relevant but may leave
it as the only alternative for improving BRT performance.

Because the re-emergence of BRT systems is a relatively recent endeavor, most extant
literature concentrates on the more classic problem of routing buses that move freely within
the road network while sharing it with other modes of transportation (for a review of the
bus routing problem prior to 1990, see |Odoni et al.|(1994) and |Chua (1984)). In that sense,
the classic bus routing problem is to define which path on the road network enables buses
to best serve passenger demand. On the other hand, because the buses of BRT systems like
TransMilenio run on dedicated lanes (bus corridors), the bus paths are a predefined part of the
physical infrastructure and the route design problem is that of selecting a subset of stations
along the bus corridors at which the buses should stop.

Nonetheless, despite the differences between the classic bus routing on road networks and
the route design of BRT systems, the bus routing literature does offer relevant information and
solution techniques. Early approaches to solving the bus routing problem are based on con-
structive processes that basically assemble routes by connecting previously built fragments via
the shortest paths. One of the first techniques following this approach is the skeleton method
proposed by [Silman et al| (1974), which generally starts by selecting a couple of terminal
nodes in the city outskirts and then progressively creates a bus network by inserting inter-
mediate stations based on passenger demand. Finally, it generates bus routes by connecting
shorter sections (skeletons) found by solving shortest path problems between the intermediate
stations.

Other researchers have solved the bus route design problem following a two-phase approach
that first builds a set of routes able to operate the system and then selects the final routes



using different heuristics. For example, [Mandl| (1980]) constructed a set of candidate routes by
solving a shortest path problem for each pair of nodes and then created routes from the pool
of candidate paths by merging those with the largest number of nodes. He included unserved
nodes by inserting them into the best position in terms of traveling time in a previously created
route.

More recently, Baaj and Mahmassani (1991)) have presented a three-component method
that simultaneously solves the bus route design and bus dispatching frequency determination
problems. The first component generates sets of routes; the second one uses a tool named
Transit Routes Analyst (TRUST) |Baaj and Mahmassani (1990) to compute route frequencies;
and the third and last component uses TRUST to improve the previously generated routes.
A sequel work by [Baaj and Mahmassani (1995)) revised the first component of the method,
integrating a hybrid heuristic focused on generating the initial set of routes. The hybrid
algorithm constructs skeletons by selecting high-demand node pairs and connecting them by
—shortest or slightly longer— paths with different nodal compositions. Finally, the skeletons are
expanded to routes based on four node insertion strategies that involve different performance
measures.

Because of the problem’s large scale, few studies have attempted mathematical program-
ming techniques for designing routes. For example, Borndorfer et al.| (2007) proposed a method
based on column generation, in which they simultaneously define the routes and determine
their frequencies. Nonetheless, their work focuses on solving the route design problem for
a multimodal transportation system. A restrictive assumption in this work is the fact that
transfers between lines are ignored because they greatly increase the complexity of the model.
As stated by Borndorfer et al., handling these transfers fosters degeneracy and it remains un-
clear whether the resulting model remains tractable for practical purposes. Leiva et al.| (2010))
introduced a mixed-integer nonlinear program that considers line transfers and bus capacities.
Because of the difficulty of solving the proposed formulation, the authors relaxed the nonlin-
ear constraints and embed the resulting formulation within a row generation scheme. To test
their approach, they solved the route design problem for a single-corridor BRT system with
10 stations. More recently, Feillet et al.| (2010) presented a mathematical formulation for the
BRT route design problem allowing route transfers. They proposed a simultaneous column
and cut generation scheme, where the routes are systematically generated at each iteration.
The authors were able to solve the BRT route design problem for single-corridor systems of
up to to 19 stations.

Lately, some researchers have explored the use of metaheuristics for the bus route design
problem. For example, Pattnaik et al.| (1998]) used genetic algorithms (GAs) to simultaneously
solve the route design and frequency problems. First, after using shortest path solutions
between each pair of nodes to produce an initial set of candidate routes (cf. [Mandl|[1980)),
they use a genetic search to find the best possible route collection for operating the system.
The information of candidate routes is encoded within each individual of the genetic algorithm
using a binary list whose routes are selected from those built using the shortest path problem.
Chakroborty| (2003), in contrast, used GAs to maximize the number of passengers moved by
the system. However, unless an explicit cost or time objective is given, the proposed solutions



tend to have more stops in every route, causing substantial delays for the passengers. Finally,
using a similar approach, |Cipriani et al.| (2012)) attempted to minimize a weighted sum of the
operator’s costs, the users’ costs, and an additional penalty related to unsatisfied demands.

More recently, some researchers have used simulated annealing (SA) to solve the bus route
design problem. For example, |Fan and Machemehl (2006) proposed an SA with an objective
function defined by the sum of the operational costs and an approximation of user costs
associated with the time spent in the system. Alternatively, [Zhao and Zeng (2006) proposed
an objective function that minimizes total passenger transfers. Even though this objective
seems reasonable, the proposed solutions tend to create routes with many stops that translate
into delays. Although, it is possible to show that in some cases it is useful to use transfers to
minimize passengers’ total travel time. Finally, |Fan and Mumford (2010) used hill-climbing
and SA to design routes for ordinary bus systems by first creating an initial solution by
solving shortest path problems and then running a local search improvement of the route set.
A singular feature of this work was the inclusion of the number of transfers in the objective
function together with the travel time.

For additional information regarding the route design and other related problems, see the
comprehensive surveys by [Farahani et al. (2013), Guihaire and Hao| (2008)), [Kepaptsoglou and
Karlaftis| (2009)), and [Schobel (2012).

Above all, most of the work in the literature on urban transit route design was originally
formulated not for BRT systems but for the bus routing problem in road networks |Ceder
and Israeli| (1992)), |Odoni et al| (1994), |(Chual (1984)), [Silman et al. (1974), Mandl (1980),
Baaj and Mahmassani| (1990, 1995), |[Pattnaik et al. (1998), Fan and Machemehl (2006]) and
unfortunately, it is not clear how to extend this methodologies to work on BRT systems. As
a result, the route design problem for a BRT system remains unsolved.

To solve the route design problem in a BRT system, we propose a mixed-integer program
(MIP) with an underlying network structure. Because of the vast number of possible routes,
finding an exact solution via branch-and-bound is a very difficult endeavor for practical size
instances; thus, we propose a decomposition strategy that, given a certain set of routes, decou-
ples the route selection decisions from the BRT system performance evaluation. To carry out
the latter evaluation, we use a large-scale linear programming technique that takes advantage
of the underlying network structure to reduce the computational time needed by conventional
optimization solvers to evaluate the performance of any given solution. To illustrate the de-
composition scheme, we present a hybrid genetic algorithm (HGA) in which each solution
is encoded in a binary genotype with multiple fragments, representing a set of routes able
to operate the BRT system. The HGA then, uses the proposed BRT system performance
evaluation as the fitness function. Additionally, we also propose a random solution generator
based on a minimum cost network flow problem that is used to generate the initial population
of the genetic algorithm. We finally used the genetic algorithm to solve 14 instances ranging
from 6 to 40 stations with different BRT system topologies.

It is important to emphasize that despite the good results, the choice of the metaheuristic is
somewhat arbitrary and should not overshadow the main contribution of this paper. In other
words, the elements proposed in this paper (i.e., the decomposition strategy, the solution



encoding, and the solution generator) are tested using a hybrid genetic algorithm, but they
are general enough to be embedded in another optimization technique (heuristic or exact).

The remainder of this paper is organized as follows. Section [2] presents a description of the
route design problem for a BRT system and puts forward the assumptions and data require-
ments for the problem, whereas §3| presents a network-oriented model of the BRT route design
problem. Section [d]describes a decomposition strategy for solving it. Section [5]briefly discusses
an extension of the network formulation to work on BRT systems with asymmetric routes,
and §0|illustrates the proposed decomposition strategy embedded in a genetic algorithm. Sec-
tion [7| illustrates the proposed approach on a set of computational experiments adapted from
the literature and from our own experience. The hybrid approach is validated and compared
against mixed-integer programming formulations solved with commercial optimizers. Finally,
concludes and outlines research currently underway.

2 The BRT Route Design Problem

In BRT systems, following the globally recognized TransMilenio model, passengers pay a single
fare at the gate of the station. Then, as in rail-based systems, they walk up a ramp toward
a doorway at which they wait for a given route (bus). Once inside the system, passengers
can travel between any pair of stations without leaving the network; however, to reach their
destination, they may need to transfer to another bus following a different route. Bus transfers
occur at intermediate stations where passengers wait for the next bus.

The stations, each associated with at least one bus corridor, are the only places in the BRT
system where buses stop and passengers get on and off. Conceptually, a bus corridor is a series
of physically connected bus lanes holding a set of adjacent stations. Routes are designed for
each bus corridor, and conversely, every bus corridor is assigned a group of routes. One very
important feature of BRT systems that follow the TransMilenio model is that buses are allowed
to pass other buses stopped at stations, giving rise to express routes (i.e., those having few
stops). To illustrate, Figure[lj(a) shows the TransMilenio BRT system. It should be noted that
one station can be shared by different bus corridors and are therefore multicorridor stations.
Four such bus corridors in the TransMilenio are illustrated in Figure [I[b), while Figure [Ijc)
graphically represents routes J70 and J72 along the bus corridor B-J whose two end stations
are B and J. Figure (1] clearly illustrates how the location of stops differs between both routes.
Whereas route J72 stops at 16 stations widely spread along the bus corridor, route J70 only
stops at 10 stations and by design skips stations located in the middle segment of the bus
corridor. Hence, the latter has the particular structure of an express route.

The BRTRDP involves finding a manageable set of routes and frequencies that mini-
mizes the operational and passengers costs while simultaneously satisfying system technical
constraints —coping with the OD matrix (trip distribution), fleet size, and lane capacities—
enforced so that the set of routes can satisfy demand without overcrowding the network (sta-
tions, buses, and lanes). Because of cultural issues and managerial efficiency, it is desirable to
operate the system with a limited number of routes.

Formal expression of the BRTRDP, however, requires prior understanding of the following
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Figure 1: TransMilenio BRT system operating in Bogota (as of June, 2010)



considerations, data requirements, and assumptions related to different aspects of the BRT

system:

1.

Solution Design. The passengers get used to the system, so it is not recommended to
change the routes very often. Routes are redesigned only when new stations or corridors
are included, or when the demand has suffered a significant change. Thus, it is not
crucial for this method to be particularly fast.

. Time horizon. The ideal time horizon should be decided based on how much the

demand varies throughout the day. Given wide variation, the problem should be solved
for peak hours because they represent a bottleneck during which system performance
most strongly influences public opinion. The set of routes found for peak hours should
thus also be valid for off-peak hours, but with lower frequencies.

Origin-Destination (OD) matriz. From among the many possible techniques for
collecting and forecasting travel demand between stations, we draw on the two proposed
by [Balcombe et al.| (2004): surveying system users and collecting information on ticket
sales (the latter is particularly suitable when redesigning the routes). These data trans-
late readily into demand for the public transit system and can be represented by an OD
matrix in which each element contains the number of passengers willing to travel from
one system station to another during a given time horizon. According to Borndorfer
et al| (2007), the OD matrix is the simplest, standard, and most convenient way to
estimate demand in a public transit system study. However, the quality of the solution
of any model that relies on OD matrices significantly depends on the accuracy of the
data. Different techniques for the estimation and calibration of the OD matrix can be
found in (Cascettal (2009) and Ortizar and Willumsen, (1994)).

Route symmetry. For the sake of simplicity, this paper assumes that all routes are
symmetric, meaning that the route stops at the same stations in both directions. Prag-
matically, some TransMilenio-type BRT systems prefer this (symmetric) route structure
because it makes the system easy to use. However, at the end of section §b| we pro-
vide information on how to extend the proposed technique to work on systems with
asymmetric routes.

Passenger assignment. One critical issue while measuring the performance of a
BRT system is to estimate the preferred travel paths of the passengers and the flow
through those paths |Desaulniers and Hickman| (2007)). Finding those paths and flows is
particularly problematic during the planning stage because there is no way to validate
against historical data. Thus, it is often the case to rely in the general assumption that all
the passengers make their travel decisions based on a common objective function |Correa
et al.| (2004), Desaulniers and Hickman| (2007). This objective function is frequently
addressed in the literature as the minimization of the total travel time Silman et al.
(1974)), (Ceder and Wilson| (1986)), [Borndorfer et al.| (2007) or as the minimization of a
generalized cost function, that is, a weighted sum of different components such as the



travel time, the waiting time, the transfer time, and the number of transfers Ceder and
[sraeli| (1992), Baaj and Mahmassani (1995), [Fan and Machemehl (2006).

Earlier work on passenger assignment was based on the all-or-nothing |Silman et al.
(1974), Mandl (1980) or common-lines Baaj and Mahmassani (1990) techniques. In
both cases, the paths and frequencies are fixed, usually as the result of a previous
stage (shortest path calculation). The main difference between both approaches is that
while in the first, all the passengers of a given OD pair are assigned to one path (i.e.,
the shortest path); in the second approach, the flows are split between common paths
according to the bus frequency (i.e., paths sharing the same cost).

More recent work on passenger assignment freely assigns the users without pre-defined
paths Borndorfer et al. (2007). Following this approach, we use a mathematical for-
mulation that simultaneously determines the passenger flow along with the frequency
determination. The advantage of this approach is that, not only the passengers are op-
timally assigned according to their objective function, but also the model can adjust the
frequencies in favor of the more congested routes. Nevertheless, to avoid nonlinearities
in the objective function, we do not consider the effect of the congestion in the stations,
passenger queues or bus bunching in the travel decisions of the passengers.

. Multiobjective structure. Aside from the passengers’ perspective, the operational
cost is another key driver to consider while planning and operating a transportation
system Desaulniers and Hickman| (2007). The operational cost is often described in the
literature as a function of the route length, the route frequency, and the cost related
to the use of the infrastructure |Borndorfer et al.| (2007), Fan and Machemehl| (2006]).
This multiobjective structure adds complexity to the problem because it often requires
a-priori articulation of the preference between both objectives, as well as the proper
estimation of the relative importance of the competing elements within each objective.
In this work, as in most of the extant literature |Baaj and Mahmassani| (1991)), Fan
and Mumford (2010]), Borndorfer et al.| (2007), Fan and Machemehl (2006]), we tackle
the multiobjective structure under a classical weighted-sum approach. The proposed
objective function is fully described in §3 but the question of how to calibrate those
weights is out of the scope of this paper.

. Route transfers. Not only are route transfers allowed, they are sometimes the only
feasible way to move passengers between a given pair of stations. Hence, allowing
transfers in a BRT system helps decrease the number of stops in a route and decreases
the number of routes needed to operate the system. Nonetheless, transfers are not
instantaneous; rather, a transfer time includes the time the passenger needs to walk
inside the transfer station (between doors on a given ramp) and the wait time for the
next bus.



3 Network Model of the BRTRDP

The mathematical formulation of the BRTRDP is based on a network representation of the
BRT system. Consider a directed graph G(N, A), where N represents the set of nodes and A
the set of directed arcs, then let S be the set of system stations and R the set of all feasible
routes able to operate the system. There is a node for every station ng € S representing
the gate to station ng; these nodes are denominated gate nodes. There is a node for every
pair (ng,7x), if the route 74 stops at station ng. These nodes represent the boarding doors
on the station ng ramp at which passengers wait for a bus serving route r;; these nodes are
denominated stop nodes. Let s(n;) be the station associated with the stop node n; and N (ry)
be the set comprised of the stop nodes of route r4. Hence, N'= (U, cr N(rx)) US. Within a
station n, there is an arc between every pair of stop nodes and an arc between the gate node
and every stop node. These arcs are denominated station arcs, are denoted A(n;) for station
ns and model the movement of the passengers inside the station. For every route ry, there is a
set of arcs A(ry,) connecting the stop nodes N (r,) following the sequence defined by the route.
These arcs are denominated route arcs and model the physical movement of a bus between
stops through busways based on the sequence defined by the route. Then, A = (U, cx A(rx))U
(U,.es A(ns)). Consider the network representation for a four-station BRT system with one
bus corridor illustrated in Figure . Here, set R = {ry,r2,73,74,75, 76, 77, '8, T'9, T10, 11 } listed
in Figure (a), which shows all possible routes for this BRT system, exclude the infeasible
routes like nonstop or single-stop routes. Additionally, set S = {ny,n2,n3,n4} contains all
gate nodes. In Figure (b), which details the subnetwork corresponding to the stations,
because routes r; through r; stop at station nq, the corresponding subnetwork contains the
(M, ) DOAES Ny 1)y Nnyra)s Pna,ra)s Pnrra)s M(nayrs)s Tnare)s A0 N, r). Thus, for instance,
$(Nny ) = n1. Figure [J(c) then shows the resulting BRT network after the expansion of
the station subnetworks and addition of the route arcs. Note that the route arcs presented
in the figure actually represent two directed arcs in both directions; for example, route 71
(red) only stops at stations ny and ny, then, N(rig) = {n(msr10)> Pnaro)} and A(rig) =
{(n(nz,mo)v n(n4,r10))7 (n(n4,r1o)v n(nz,rw))}-

Two types of costs are considered: the passenger cost of using the BRT system and the
BRT’s operational costs. Let ¢;; be the cost (e.g., time) that a passenger incurs when traversing
arc (n;,n;). If this arc (n;,n;) is a station arc, then ¢;; represents the walking time from the
gate to a boarding door, from a boarding door to the gate, or the transfer time (the walking
time between boarding doors plus the average wait) time for the next bus. If arc (n;,n;) is
a route arc, then c;; represents the time the bus takes to travel between two successive stop
nodes; this time is assumed to be departure independent of the route, i.e., it only depends
on the departure and arrival stations. We also denote this travel time between stations s(n;)
and s(n;) by Cs(ny)s(n;)- et gr be a fixed cost of operating route 7 and hy be the cost of
allocating a bus to serve route r;,. Let b°? be the number of passengers willing to travel from
station n, to station ng (i.e., the (o,d) element of the OD matrix). From this value, b2¢ is
defined for every node n;, where b%¢ = v°¢, b3 = —b°¢, and b9? = 0 otherwise. It should be

noted that stop nodes act as transshipment nodes. Let () be the number of buses available to
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Figure 2: Example of a four-station BRT system
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serve the BRT system and u be the passenger capacity of each bus. For the sake of simplicity,
we assume that the fleet of buses is homogeneous (i.e., all the buses have the same capacity).
Let g, be the maximum number of buses that could be allocated to route r; and m be the
maximum number of routes that the BRT operator is able to manage. Let xfjd be a decision
variable that represents the flow through arc (n;,n;) of passengers willing to go from station
n, to station ng. Let y, be a decision variable that takes the value of 1 if route r} is selected
to operate the BRT system; it takes the value of 0 otherwise. Finally, let f; be the number of

buses allocated to serve route 7 (i.e., frequency). Then, the BRTRDP is as follows:

min o Z Cij Z Z xfjd + 8 (Z (gryr + hk:fk)) (1)

(ni,nj)E.A no€ES ng€S rLER
s.t.
Z xf — Z x% = b, ni € N,n, € S,ng €S; (2)
{nj:(nin;)EA} {nj:(nj,n;)€A}
Z Z ' < ufi; e € R, (ngny) € Alry) (3)
NoES Ng€ES
e < yrar, Tk ER; (4)

g
=
|

©
=

rr,ER
yr € {0,1}, rp €R; (7)
fr >0, e € R; (8)
2t >0, n, € S,ng €S, (ni,n;) € A (9)

where the objective function simultaneously minimizes the passenger travel cost and the
operational cost of the BRT system. Note the existing compromise between both objectives,
that is, minimizing the passenger travel cost would result in a larger number of routes and
buses serving the BRT, which implies a deterioration on the revenue for the operator. For this
reason, scalar weights a and 3 are used to combine both objectives under a classical weighted-
sum approach (a-priori articulation of preferences). Balance constraints guarantee that all
passengers reach their destination. Capacity constraints force the flow of passengers for
every arc to be less than the combined capacity of the buses allocated to serve a given route.
Constraints ensure that if a route is selected to operate the system, the buses allocated
to serve such route do not exceed the maximum allowed. Constraint guarantees that the
number of selected routes does not exceed a manageable limit set by the BRT system operator.
Finally, constraint @ bounds the number of buses.

Even though the model defined by fully describes the BRTRDP, solving it is unfortu-
nately a difficult task. The BRTRDP falls into a broader category of complex problems known
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as network design problems, comprised among others by the fixed-charge network design prob-
lem Magnanti and Wong (1984), the capacitated network design problem Balakrishnan et al.
(1997), and the capacitated multicommodity network design problem [Frangioni and Gendron
(2009), all of them proven to be NP-hard.

We now outline how the capacitated multicommodity network design problem (CMND),
is polynomially reducible to the BRTRDP. From the CMND formulation |(Ghamlouche et al.
(2003)) we can associate each arc (n;,n;) of its underlying network with a route 74, thus we
are able to rewrite variables y;; as yj, for every arc (n;, n;) such that A(ry) = {(n;,n;)}. Then,
after fixing the parameters « = 1, § = 1, g = 0, m = oo, and @ = |A|; and eliminating
the redundant constraints in the BRTRDP formulation , the resulting problem is indeed
an instance of the CMND, proving that the BRTRDP is in fact an NP-hard problem. As
a result, approaches to tackle the BRTRDP or any other network design problem rely on
heuristic techniques to solve practical instances of reasonable size (Ghamlouche et al. (2003).

Aside from its worst-case analysis, note that the size of the BRTRDP defined by
in terms of the number of variables and constraints is intimately tied to the set of routes R.
Moreover, due to the combinatorial structure of the problem the total number of routes is
O(2!%1). Since for every route 7 the underlying network contains the sets of stop nodes N (ry,)
and route arcs A(ry), thus the number of constraints and variables grows exponentially
with the number of stations. This implies that in order to solve the proposed model defined
by , it is necessary to solve a problem with an extremely large number of constraints and
variables. Indeed, this number could be huge even for small instances (see § .

4 Decomposition Strategy for the BRTRDP

The BRTRDP defined by is undoubtedly a hard large-scale optimization problem. Even
small-sized instances are out of reach for commercial branch-and-bound based optimizers.
However, if somehow the set of routes that serves the BRT system is fixed, the size of the
network reduces dramatically and the resulting problem becomes well defined. In other words,
the problem is reduced to the evaluation of the BRT system given that set of routes. Formally,
the idea is to select a small collection of routes R' C R (|R'| << |R|), fix the corresponding
yr variables to 1 for every route r, € R’ (and y; < 0 for all r, € R\ R’), construct a
graph G'(N’, A') by pruning nodes and arcs in G given R’, and find the overall cost of the
resulting BRT system. To evaluate the performance of the BRT system, given a set of routes
represented by y, we solve the following linear optimization problem:

f(y) = min a Z Cij Z Z :L’fjd + 4 (Z hkfk> (10)

(ng,nz)eA’ no€ES ng€S rLER’
s.t.
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Z x?f - Z x}?? =0 n,eN'n,€8S,ng€S; (11)

{nj:(ni,n;) €A’} {n;:(nj,n;)e A’}
Z Z 23! < ufy, € R (ni,ny) € Alry); (12)
noES ng€ES
fr <@ T €ERS (13)
Z Je < @ (14)
rL€ER’
$de > O, nOGS,ndGS,(i,j) GA/; (15)
fr >0, rmeR. (16)

Note that, since most of the nodes and arcs were pruned when fixing variables y, the model
defined by is significantly smaller than the BRTRDP formulation . Moreover,
because all the variables in the model are continuous, this is in fact a linear optimization
model, which theoretically can be solved in polynomial time. Additionally, note that this
model closely resembles a multicommodity network flow problem (MCNF) in which each
commodity represents passengers traveling from station n, to station ngz. Despite the extra
variables fi, we can successfully take advantage of the MCNF structure, via the decomposition
principle. The most important implication of this formulation is that, thanks to its structure,
it is possible to evaluate in a relatively short time how well the BRT system will perform given
the set of routes defined by y.

To solve the problem defined by , we use a variant of the decomposition principle
proposed by (Tomlin| (1966) originally conceived to solve MCNF problems. There are also
other solution approaches suggested in the literature McBride| (1998)), Ahuja et al.| (1993) that
could be adapted to solve the problem. The decomposition principle allows the acceleration
of the solution process by taking advantage of the problem’s internal network structure. The
decomposition principle splits the original problem in two, giving rise to a master and an
auxiliary problem. In a given iteration, the auxiliary problem provides the master problem
with possible paths, the master problem then receives these paths, builds a new basis, and
returns the dual pricing to the auxiliary problem so it can declare optimality or construct
other paths if necessary.

The master problem is defined as follows. Let P,; be the set of all possible paths that
satisfy the balance constraints for the pair of stations (n,,n4) € S x S. Let w;;, be the
flow of passengers through the arc (n;,n;) € A’, in the path p € P,4. Let )\gd be a multiplier
associated with the p** path p € P,;. Hence, the master problem is as follows:

fy)=min o D> ;Y>> Ny, | +8 (Z hkfk) (17)

(ni,nz)eA’ No€ES NgES PEPoq r,ER’/
S.t.
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Z Z Z )\zdwi]’p < ufk, TR € R',(ni,nj) - A(Tk); (18)

No€ES NgES PEPyy

Z Je < @Q; (19)
rrER’

e <q, meR; (20)

XNt =1, neSn€S; (21)
pepod

AT >0, n,€8,m4€S8,pE Pog; (22)

fr >0, rmeR, (23)

where the objective function of the master problem , as in the original problem, is to
minimize the passenger travel cost and the operational cost of the BRT system; the inequalities
represent the arc capacity constraints; relations ensure that the buses allocated to
serve the routes do not exceed the maximum allowed; constraint bounds the number of
buses; and equations represent the convexity constraints for every pair of stations (n,, ng).
Note that the set of variables f; in the master problem is fixed over the iterations, since it
only depends on the set of routes R’ that is being evaluated by the algorithm. On the other
hand, the sets P,q grow with the paths built by the auxiliary problem at each iteration.

The auxiliary problem is separable with a diagonal block structure in which each block
relates to the passenger flow between a pair of stations (n,,n4). Let ij be the dual variables
of the capacity constraints of arc (n;, n;) € A(ry) and °? be the dual variable associated
with the convexity constraint for the pair (n,,nq). The auxiliary problem (block) for the
passengers (n,,nq) is defined by:

min Z (acij — Z WZ) z — 4 (24)

(ni,nj)EA’ rLER’/

s.t.

2. - )L A= e, (25)
{nj:(nin;)eA’} {n;:(n;jn;)e A’}

294 > 0, (ni,nj) S A,; (26)

ij =
where the set of constraints guarantees that the offer and demand for passengers (n,, nq)
is met in every node. Since there is no limit on passenger flow (n,,n4), this problem can be
solved by pushing all the (n,,ng4) flow through the shortest path. Hence, the solution to this

problem can take advantage of a specialized algorithm.
The optimality conditions can be written as follows:

Z (acij - Z WZ) xfjd >~ (ny,ng) €S x S. (27)
(ng,mj)eA’ r,ER’

If these conditions are met, it means that there are no more paths that decrease the overall
cost, thus, the current solution in the master problem is optimal.

15



To solve the BRTRDP, the proposed performance evaluation tool defined by can
be embedded within an optimization framework working on a solution space comprised of the
set of routes able to operate the BRT system. In Section §[6], we illustrate such an optimization
scheme based on a genetic algorithm that uses the previous model derived in this section as a
fitness function. Nonetheless, other effective search mechanisms in combinatorial optimization
(e.g., a tabu search) can also take advantage of the same decomposition approach presented
here.

5 Extension to the Network Formulation to Asymmet-
ric Routes

The network formulation can be extended to work on BRT systems with asymmetric routes,
that is, routes that do not stop at the same stations in both directions. To model asymmetric
routes, first, for every route we define a traveling direction along the corridor. For example
in Figure [2| the two possible directions are 1-4 and 4-1. The network is built as before, but
every stop node is duplicated to account for each traveling direction. Additionally, for every
route 7y, the set of route arcs A(ry) is now comprised only by the arcs following the direction,
that is, either (n;,n;) or (n;,n;), but not both. Note that under this approach, handling both
directions doubles the number of candidate routes, thus affecting the size of the optimization
model. Figure [3| shows an example of the network representation for the same four-station
system used in Figure [2] For the sake of clarity, we display only four from the whole set of
22 set of candidate routes (the same 11 routes described in Figure 2| but in both directions).
Note that even though routes r; and 7, stop at the same stations, they travel in different

directions.

1
T2

3|3 =
w 5

4

(a) Sample of four asymmetric routes

< < <
X R p / X p R # N\ X 7
AN \ / / \ . / /
N /) \ / \ / N\ /)
~ N\ A()A,,/ - \O‘/ \AOA/ ~ \O“/ -
> e N g

(b) Network representation of the sampled routes

Figure 3: Example of a four-station BRT system with asymmetric routes
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6 Hybrid Genetic Algorithm

Genetic algorithms |Goldberg| (1989) are stochastic search procedures inspired by the principles
of natural selection. In any given generation (i.e., iteration), genetic operators combine and
alter a population of solutions that undergoes an evaluation and selection process in which
the fitter individuals (i.e., solutions) are more likely to survive. To improve the convergence of
genetic algorithms, some researchers have explored hybrid genetic algorithms, which, in a strict
sense, are those composed of simple algorithms Black (2004). However, because there appears
to be no general agreement on the use of the term hybrid, we use it here in the sense of decoding
a chromosome (solution encoding) and evaluating its fitness by means of an exact algorithm.
Even though this approach might seem related to what some authors call hybrid genetic
algorithms Whitley| (1995), (Cheng et al. (1999), other researchers prefer the term memetic
algorithms to emphasize the use of (local) search procedures to intensify the genetic search
Moscato (1999). In our view, the proposed approach can also be seen as a matheuristic, a
term that has been recently coined to emphasize the cross-fertilization (hybridization) between
mathematical programming and metaheuristics (Caserta and Vof} (2010). Hence, this section
describes the key components of the proposed hybrid genetic algorithm, hereafter called HGA.

6.1 Solution encoding (genotype).

Each individual represents a collection of maximum m routes able to operate the system. The
routes allocated to a given bus corridor are coded in a list of binary arrays with each array
representing a route in which each bit represents a station in the bus corridor. A bit with
a value of 1 indicates that the route stops at the corresponding station, whereas a value of
0 indicates that the route does not stop. It should be noted that in the illustration of a 7-
station BRT system with two bus corridors shown in Figure [4] the number of routes assigned
to each bus corridor could differ between individuals. In fact, such solution encoding allows
the possibility that a bus corridor might even end up with no routes allocated after a number
of iterations.

6.2 Fitness function.

The key feature of this proposed genotype is that, because the binary variables y described
in are coded in the individual, the fitness of an individual can be obtained by simply
solving the problem defined by instead of the complex mixed-integer program (MIP)
described by . For this purpose, we used the decomposition strategy presented in Section

4l

6.3 Initial population.

A set of routes R’ with cardinality m’ < m is randomly assigned to every individual in the
initial population. Each route r, € R’ is associated with a bus corridor ¢ € C, where C is
the set of bus corridors in the system. To generate routes for a new individual, we define a

17



F——— Bus corridor 1-6 ——

(a) System description
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(b) Genotype

Figure 4: A 7-station example

minimum cost flow problem (MCF) on a directed graph, where route stops are the units that
flow through the network.
Let the fraction p(c) of routes assigned to bus corridor ¢ be proportional to the number of
stations s(c) in the bus corridor as defined by p(c) = s(c)/ Y. s(¢'). Let 6(ry) be a function
cdeC

that returns the bus corridor of a given route r;. For example, if route 7, is assigned to bus
corridor ¢, then §(7) = €. There is a route node for every r;, € R’ (m' route nodes in total);
a station node for every ngy € §; and two nodes f and d denominated source and sink nodes,
respectively. The source node pushes all the units (route stops) through the network, while
the sink node absorbs them. There is an arc between the source node f an every route node ry,
all which are denominated corridor-route arcs and grouped in set A(f). Likewise, there is an
arc between each route node r and every station node in bus corridor ¢ = §(ry), denominated
route-stop arcs and further grouped in set A(c) and if a unit flows through this arc, it means
that route r; stops at station ng. Finally, there is an arc between every station node n, and
the sink node d, all denominated station-stop arcs and grouped in set A(d). Figure |5 presents
an example for the 7-station BRT system previously presented in Figure (a).

Let I(ry) and u(rg) be the lower and upper bounds associated with the flow on arc (f,rx) €
A(f), they represent the minimum and maximum number of stops of route r;. To be feasible,
the number of stops in a route must fall between two and the number of stations along the
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Figure 5: Example of the underlying minimum cost flow network for the initial population
(m' = 5)

bus corridor, meaning [(r;) = 2 and u(ry) = s(6(rx)). The cost associated with the arcs
in A(f) is zero. For every (ry,ns) € A(d(rr)), let cxs(w) be the cost of allocating a stop
at station ng in route ri, where w is a random effect that is responsible for the diversity of
the newly generated individuals and might therefore take negative values and be different for
each (g, ns) € A(d(ry)). Every arc (ry, ns) € A(0(r%)) has lower and upper bounds of 0 and
1, respectively, which guarantee that at most one stop is allocated at any station in a given
route. Let [(n,) and u(ng) be the lower and upper bounds on the flow of arc (ng,d) € A(d),
they control the minimum and maximum number of stops allocated at station ng regardless
of the bus corridor. It should also be noted that higher values on the bounds help with
the connectivity of the BRT network and thus with the feasibility of the individual (e.g.,
I(ns) > 1). The cost associated with flowing through arc (n,,d) € A(d) is zero. Finally, there
is an arc between node d and node f that represents the total flow within the network. The
cost associated with using this arc is also zero, and its lower and upper bounds are zero and

> u(rg), respectively.
T’kER’
Here, the objective is to minimize the total cost associated with the allocation of stops to

stations, while satisfying flow capacity constraints. Moreover, since every node in the network
is a transshipment node, the MCF problem can be seen as a circulation problem Ahuja et al.
(1993)).
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6.4 Genetic operators and selection.

Since the routes allocated to each bus corridor are coded in a list of binary arrays, we can
apply classical genetic operators like bit flipping mutation (on a randomly selected route)
and two-point crossover Michalewicz (1996). It should be noted that applying a two-point
crossover Michalewicz ((1996) to a couple of routes  and 74 allocated to a given bus corridor
¢ produces two routes r] and 5. Figure @ shows an example of two routes generated by
applying the two-point crossover operator after the first and third positions of the binary
arrays. Given a specific bus corridor, we apply the crossover operator as many times as the
least number of routes present in one of the two parents. That is, assuming that parent p;
has less routes allocated to corridor ¢ than parent p,, we select each route from p; and cross
it with a randomly selected route from p,. We apply the same procedure to every corridor.

[1{0]1]0]1]
1
11
1

T1:

=

To:

Of1]1]1]0]

1
1: [O]OTEI]0]
[L]1]1]O0]T]

Figure 6: Example of the two-point crossover
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<
—

<
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Because of the routes’ binary structure, the genetic operators are likely to produce individ-
uals with the same fitness (clones), which is particularly critical in small-sized instances where
such behavior may cause premature convergence to local optima. To avoid this problem, we
use a tournament selection operator Miller and E.| (1995)) forbidding the selection of clones at
each iteration.

7 Computational Experiments

The HGA was coded in Java Genetic Algorithm (JGA) Medaglia and Gutiérrez| (2007)), a
publicly available Java-based object-oriented framework for solving optimization problems
using evolutionary algorithms. JGA allows the user to focus on the specific application
logic by reusing a set of built-in components. As shown in Figure [7] to implement the pro-
posed algorithm in JGA, we extended the framework by coding the chromosome’s genotype
(BRTRDPGenotype), the fitness function evaluator (BRTFitnessFunction), the initial popula-
tion procedure (MCFInitialization), the selection mechanism (TournamentSelection), and
the crossover and mutation operators (BRTRDPCrossover, BRTRDPFlipMutation).

We solved both the model embedded in the fitness function evaluator and the MCF in the
initial population generation procedure by connecting the corresponding Java component to
the Xpress-MP optimizer, version 19.00.00.

To fine tune the HGA parameters, we conducted an experiment on a medium sized 21-
station instance to explore the impact on solution quality of different levels of population
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Figure 7: Implementation of the Genetic Algorithm in JGA

size (P = 20,30,50 ), maximum number of generations (N = 100,200, 500), crossover rate
(p. = 0.2,0.3,0.7), and mutation rate (p,, = 0.05,0.08,0.10). Figure |8 reports the gap (in %)
with respect to the best solution on each of the 81 (=3 x 3 x 3 x 3) parameter combinations.
Based on these gaps, where the bright areas are preferred over the dark areas, we fixed p. = 0.3
and p,, = 0.1 while selecting parameters P and N dependent on problem size. For the larger
instances we fix P = 30 and N = 200. We conducted this experiment using JG2A Bernal et al.
(2009), an extension of JGA for computational grid environments; however, owing the diverse
computational environment (one Dell OptiPlex 755 with an Intel Core Duo CPU running at
3.00GHz with 4 GB of RAM on Windows XP Professional; six Dell GX280-SD with an Intel
Pentium IV CPU running at 2.5GHz with 512 MB of RAM on Windows XP Professional,
and one Dell PowerEdge with an Intel Xeon Woodcrest 5120 processor with 4 GB of RAM on
Windows Server 64 bits), we do not report the CPU time.

We tested the performance of the HGA by solving a set of 14 instances ranging from 5 to
40 stations. Instances 1 and 2 were adapted from two networks proposed by |[Marin| (2007)),
representing a 6-station BRT system with 2 bus corridors (MAR-C2-S6) and a 9-station BRT
system with 3 bus corridors (MAR-C3-S9). Instances 3 to 9 represent a BRT system with
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Figure 8: Effect of P, N, p., and p,, on the solution quality on a 21-station BRT system

one bus corridor and 5, 6, 7, 8 9, 10, and 25 stations, labeled BRT-C1-S5, BRT-C1-S6,
BRT-C1-S7, BRT-C1-S8, BRT-C1-S9, BRT-C1-510, and BRT-C1-S25, respectively. Instance
10 represents a more complex 13-station BRT system with two bus corridors (BRT-C2-S13).
Instance 11 is a triangular-shaped BRT system comprised by 33 stations and 3 bus corridors,
labeled BRT-C3-S33. Instance 12 is a scaled representation of the TransMilenio BRT system
with 10 bus corridors and 21 stations (BRT-C10-S21). Instance 13 labeled MIO-C3-S37, is
a representation of the Mio, the BRT system of the city of Cali (one of the largest cities in
Colombia); it has 37 stations and 3 of its most representative bus corridors. Finally, instance
14 is the largest instance with 3 corridors and 40 stations, labeled (BRT-C3-540). The diversity
of the topologies captured by this set of instances is shown in Figure [J] We performed the
computational tests on a Dell Precision T7400 with an Intel Xeon CPU X5450 running at
3.00GHz with 8 GB of RAM on Windows Vista Ultimate.

For benchmark purposes, we calculated a dual bound based on the linear relaxation (LR)
of the BRTRDP formulation proposed in using Xpress-MP 19.00.00 and CPLEX
12.1.0. For each instance, Table [I| reports the size of the underlying network in terms of the
number of stations, bus corridors, and routes; as well as the problem size in terms of number
of variables and constraints of the linear relaxation, its optimal value, and the elapsed time in
seconds used by Xpress-MP and CPLEX to solve it. Because of the huge size of instances 9 to
14, neither Xpress-MP nor CPLEX could construct the linear relaxation problem. Notice the
exponential number of variables and constraints as the number of stations and bus corridors
increase.

For instances 1-12, we conducted 10 independent runs of the HGA, while for instances 13
and 14 we conducted 5 independent runs. Table 2| shows the HGA settings for the population
size P and the maximum number of generations N, the best solution reported by the HGA,
the average CPU time, and the gap between the best value of HGA and the linear relaxation
(optimistic bound). For instances 1 through 6, the HGA consistently achieved the same
solution in every run, while for instances 7, 8, 9, 10, 11, 12, 13, and 14 it found average gaps
with respect to the best solution of 0.0016%, 0.0087%, 0.0139%, 0.0001%, 0.0061%, 0.0049%,
0.2083%, and 0.0094%, respectively. To check the overall quality of the best solution found by
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Figure 9: Topologies of the BRT systems in the testbed
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Table 1: Problem size and linear relaxation information for the 14 instances

Instance Problem size CPU time (s)
No Label IS| IC| |R|  Variables Constraints LR Xpress-MP  CPLEX
1 MAR-C2-56 6 2 15 10,410 1,351 240,264 0.01 0.02
2 MAR-C3-59 9 3 34 113,108 7,498 553,762 0.70 0.40
3 BRT-C1-S5 5 1 26 5,012 1,726 752,380 0.01 0.01
4 BRT-C1-S6 6 1 57 19,014 6,077 863,576 0.05 0.08
5 BRT-C1-S7 7 1 120 64,248 19,580 925,392 0.71 0.47
6 BRT-C1-S8 8 1 247 200,414 59,131 988,631 2.58 2.84
7 BRT-C1-S9 9 1 502 589,676 169,978 1,062,204 15.65 20.73
8 BRT-C1-S10 10 1 1,013 1,659,286 470,009 1,119,764 177.56 273.88
9  BRT-C1-525 25 1 =3x10" =~4x10"® =~3x10" — —
10 BRT-C2-513 13 2 304 ~2x107 ~ 3 x 10° - - -
11  BRT-C3-S33* 33 3 12,249 ~2x 107 ~2x 107 - - -
12 BRT-C10-S21* 21 10 2,701 ~3x10° =9 x 10 - - -
13 MIO-C3-S37* 37 3 =1x10° ~7x10*" =1x10" - - -
14  BRT-C3-S40* 40 3 =3x107 =4x10¥® =~1x10" - - -

* The number of variables and constraints were calculated based on the size of each bus corridor.

HGA, we compared it against the dual bound obtained by the linear relaxation. For instances
1 through 8, the average gap with respect to the linear relaxation was 0.10%, and never greater
than 0.20%. Even though those instances may be considered small, the gaps of less than 1%
provide some evidence that this good performance could scale to larger instances, for which
no good bounds are known. In addition, in terms of solution time, the HGA has also proven
robust. We found that the average coefficient of variation in the time spent by the algorithm
was 0.0567, meaning that, regardless of the random stream, the elapsed time is consistently
the same.

We finally tested whether the solutions found were indeed optimal. Therefore, we directly
solved the MIP of the BRTRDP formulation proposed in for instances 1 to 8 (i.e., the
instances for which the optimizers were able to solve the linear relaxation) using Xpress-MP
19.00.00 and CPLEX 12.1.0. We set the maximum running time of the optimizers to 12 hours,
almost 160 times the time spent by the HGA to solve the largest of the 8 instances. As Table
shows, Xpress-MP and CPLEX both reached the optimal solution for instances 1, 2, 3, and
4 in less than 80 seconds. Remarkably, HGA also obtained the same optimal solution in every
run within a reasonable time (ranging from 2.778 to 29.281 seconds on average). However,
for the remaining instances, none of the optimizers could find the optimal solution within the
time limit. For instances 5 and 6, the HGA was able to find the same solution found by the
optimizers, but we cannot guarantee that the solution is optimal since the optimizers were
not able to close the gap. For instances 7 and 8, the HGA was 0.016% and 0.431%, better,
respectively, than the best solution found by Xpress-MP. For those instances, CPLEX found
no integer solution within the allowed time limit.

Finally, Figure [I0] shows a graphical representation of the solutions found by the HGA for
instances BRT-C1-S10, BRT-C2513, and MIO-C3-S37, including the stops and the number
of buses allocated to serve each route. Additionally, Table |4 presents the OD matrix for the
BRT-C1-S10 system, where the high-demand (o, d) pairs are in bold.
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Table 2: Performance of HGA and comparison with the Linear Relaxation

HGA Average Gap
Instance P N best time (s)  (LR-HGA best) %

1 5 100 240,353 2.78 0.03%
2 10 100 554,154 16.70 0.07%
3 10 200 752,672 8.42 0.04%
4 20 200 864,346 29.28 0.09%
5 30 200 926,371 72.56 0.11%
6 30 200 989,771 122.84 0.12%
7 30 200 1,063,991 193.79 0.17%
8 30 200 1,121,948 276.85 0.20%
9 30 200 93,394,080 22,068.05 -
10 30 200 58,904,536 596.60 -
11 30 200 215,677,088  25,360.37 -
12 30 200 183,861,728  17,561.27 -
13 30 200 405,040,576 146,729.84 -
14 30 200 347,142,432 79,297.08 -

Table 3: Performance of HGA against the MIP optimizers Xpress-MP and CPLEX with the
time limit of 43,200 seconds

Xpress-MP Gap (HGA best- CPLEX Gap (HGA best-

Instance Best integer  Time (s) Xpress-Mp) %  Best integer  Time (s) CPLEX) %
1 240,353 0.31 0.000% 240,335 0.22 0.000%

2 554,154 72.16 0.000% 554,154 25.43 0.000%

3 752,672 0.42 0.000% 752,672 0.33 0.000%

4 864,346 7.33 0.000% 864,346 8.47 0.000%

5 926,371  43,200.00 0.000% 926,371 43,200.00 0.000%

6 989,779  43,200.00 0.000% 989,771 43,200.00 0.000%

7 1,064,159  43,200.00 0.016% - 43,200.00 -

8 1,126,784  43,200.00 0.431% - 43,200.00 -

Table 4: OD matrix for the BRT-C1-S10 system

OD 1 2 3 4 5 6 7 8 9 10
1 0 2 5 27 3 11 7 2 1
2 3 0 2 24 18 5 58 21 26
3 S 3 0 5 8 6 62 19 15 3
4 43 149 20 0 0 10 256 196 264 57
5 3 17 3 8 0 O 10 2 14 0
6 4 9 8 17 0 O 1 5 3 10
7 26 106 79 227 5 2 0 0 18 8
8 ) 36 26 151 7 0 4 0 0 0
9 19 23 233 21 4 8 0 0 1
10 1 3 4 49 12 4 15 2 1 0
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Figure 10: Solutions found by the HGA

For the case of the BRT-C1-S10 system, note that the segments without stops in routes 2
and 3 significantly benefit passengers willing to travel between the stations with high demands.
For example, the 497 passengers traveling between stations 4 and 9 (i.e., 264 from station 4 to
station 9 and 233 from station 9 to station 4) can expedite their travel without intermediate
stops by using route 2. A similar situation occurs between stations 4 and 7 on route 3. On
the other hand, route 1 stops at every station to cover lower demand o-d pairs. This expected
behavior has been observed in other BRT systems with different topologies. Regardless of the
instance, note that there is always a route that stops at every station in each bus corridor;
and, when there are multiple routes allocated to a bus corridor, they try to cover different
stations, complementing each other. For instance, see routes 4 and 5 of the bus corridor 1-37
in the solution for the MIO-C3-S37.

In terms of frequencies, for the case of the MIO-C3-S37 system, the number of buses
allocated to the 6 proposed routes were 19.12, 28.65, 21.29, 8.52, 9.97, and 27.90, respectively;
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using about 116 out of the 150 available buses. Furthermore, since the OD matrix was built
using a three-hour peak in the morning, buses serving those routes should be dispatched
roughly every 9, 6, 8, 21, 18, and 6 minutes, respectively.

8 Concluding Remarks

This study was motivated by the ever-increasing interest of city planners in adopting BRT
systems as competitive alternatives to rail-based systems. Owing to the vast success of systems
like TransMilenio in Bogota, many cities have been rapidly adopting this type of public transit
system. However, eventually, BRT system operators face the problem of (re)designing the bus
routes to increase system efficiency and overall user satisfaction.

To address this problem, we formulate the Bus Rapid Transit Route Design Problem
(BRTRDP) as a MIP with an underlying network structure. However, because this problem’s
direct solution is out of reach for practical size problems, we propose a decomposition strategy
that, given a set of routes, decouples the route selection decisions from the BRT system
performance evaluation. This evaluation is solved using a large-scale linear programming
technique that reduces the computational time needed to evaluate the performance of any
given solution. To illustrate the decomposition scheme, we present a hybrid genetic algorithm
(HGA) in which each solution is encoded in a binary genotype with multiple fragments,
representing a set of routes able to operate the BRT system.

To test the HGA’s performance, we solved 14 instances: two adapted from the literature
and 12 emulating realistic BRT systems. Two of the largest instances are a 21-station scaled
version of the widely popular TransMilenio BRT system and a 37-station built from 3 repre-
sentative bus corridors of the Mio BRT system of Cali (Colombia). The HGA reached very
accurate solutions for all instances, and in 8 out of 14 problems obtained a provably optimal
solution within less than 0.2% of a strong dual bound. In 4 out of 14 instances, the HGA
obtained the optimal solution.

We believe that, beyond its genetic search features, this application of the HGA has shown
that the proposed decomposition strategy can successfully tackle real-sized instances of the
BRTRDP. Moreover, the same decomposition strategy could easily be embedded into another
metaheuristic framework such as a tabu search or variable neighborhood search.

Research is currently underway to improve the execution time of the fitness evaluation
procedure by implementing a specialized shortest path algorithm.
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