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Abstract

In recent years, well-designed bus rapid transit (BRT) systems have become a real

alternative to more expensive rail-based public transportation systems around the world.

However, once the BRT system is operational, its success often depends on the routes

offered to passengers. Thus, the Bus Rapid Transit Route Design Problem (BRTRDP)

is the problem of finding a set of routes and frequencies that minimizes the operational

and passenger costs (travel time) while simultaneously satisfying the system’s technical

constraints, such as meeting the demands for trips, bus frequencies, and lane capacities.

To address this problem, we propose a mathematical formulation of the BRTRDP as a

mixed-integer program (MIP) with an underlying network structure. However, because

of the vast number of routes, solving the MIP via branch and bound is out of reach

for most practical instances. Hence, we propose a decomposition strategy that, given

a certain set of routes, decouples the route selection decisions from the BRT system

performance evaluation. The latter evaluation is done by solving a linear optimization

problem using a column generation scheme. We embedded this decomposition strategy

in a hybrid genetic algorithm (HGA) and tested it in 14 instances ranging from 5 to

40 stations with different BRT system topologies. The results show that in 8 out of 14

problems, the HGA was able to obtain a solution that is provably optimal within 0.20%.

Additionally, in 4 out of 14 instances, HGA obtained the optimal solution.

Key words: bus rapid transit systems; public transit network design; bus routing; urban

logistics; matheuristics; genetic algorithms.

1 Introduction

A Bus Rapid Transit (BRT) system is a flexible, rubber-tired, high-capacity, low-cost public

transit solution that is a competitive alternative to more expensive rail-based systems. Most

specifically, BRT systems combine specialized buses, dedicated lanes, stations, off-vehicle fare

collection, and intelligent transportation systems (ITS) into an integrated system with a strong

identity under a unique image Danaher et al. (2007), Levinson et al. (2003).
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The re-emergence of BRT is a worldwide initiative, with cities ranging from small to

megasized adopting such systems. Just to name a few, in North America, BRT systems are

in use in Los Angeles (US), Boston (US), and Ottawa (Canada); in Europe, in Leeds (UK)

and Rouen (France); in Australia, in Sydney and Adelaide; and in South America, in Quito

(Ecuador), Sao Paulo (Brazil), and Bogotá (Colombia). Indeed, a recent study by Hidalgo

and Gutiérrez (2013) reports the application of 120 BRT systems around the world, covering

in total more than 4,300 km in bus lanes, and serving about 28 million passengers per day.

One of the most highly recognized BRT implementations among transportation planners is

TransMilenio TransMilenio (2013), Weinstock et al. (2011), which serves Bogotá, a city with

7,000,000 inhabitants citymayors.com (2013). By September of 2012, the system comprised

an 87-km network of exclusive lanes, 115 stations, 1,392 articulated and bi-articulated buses

(with 160- and 260-passenger capacity, respectively), and 90 routes. Already carrying over

1.5 million passengers per day by late 2012, TransMilenio was moving more than 198,000

passengers per peak hour by 2012, a volume normally associated with heavy rail transit

modes. In addition, TransMilenio had increased average public transit travel speeds from

15 km/h to 27 km/h Cain et al. (2006), TransMilenio (2013). The great success of this BRT

system has inspired other cities in Colombia and around the world to emulate the TransMilenio

model Cain et al. (2006). In Colombia alone, the same model has been implemented by small-

scale BRT systems in Barranquilla (TransMetro), Bucaramanga (MetroĹınea), Cali (Mı́o),

Cartagena (TransCaribe), Medelĺın (MetroPlús), and Pereira (MegaBus).

Nonetheless, despite the overwhelming success of BRT systems like TransMilenio, once in

operation, they are subject to public complaints such as overcrowding and long wait times

Cain et al. (2006), Cámara de Comercio de Bogotá (2010). In fact, a former TransMilenio

operations manager claimed back in 2003 that the expected demand and passenger behavior

of any BRT system in the planning stage often deviates from the system when it is in place

and fully operational McAllister (2003). This mismatch between the planned and operational

phases requires a thorough revision of the planned routes using a real origin-destination (OD)

trip distribution matrix.

Thus, even though this research focuses on designing (or redesigning) BRT system routes,

planning and operating any public transportation system raises a sequence of interrelated

problems that must be tackled Ceder and Wilson (1986), Farahani et al. (2013), Guihaire and

Hao (2008), Kepaptsoglou and Karlaftis (2009), Schöbel (2012). At the highest level of the

hierarchy, the network design problem deals with deciding the physical layout of the trans-

portation system. Laporte et al. (2002) solved the problem of deciding the best locations for

the stations in a predesigned alignment (line) of a rapid transit system. Their approach is

based on a longest path algorithm and a careful estimation of the catchment area. Likewise,

Bruno et al. (2002) modeled the problem of locating a rapid transit alignment by maximizing

the covered population subject to interstation spacing constraints. To solve the mathematical

formulation, they proposed a two-phase algorithm that (1) constructs the alignment and (2)

improves it. Even though designed for the single-alignment problem, their method could be

used as a building block for designing rapid transit systems with multiple alignments. As

a methodology for integrating the station location problem with that of connecting stations
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through a small number of alignments, Laporte et al. (2007) proposed an integer program

that includes the construction cost as a constraint, which they illustrated using small six-

and nine-node networks. Maŕın (2007) extended this model by allowing it to choose a vari-

able number of alignments without predetermined origins and destinations. Unfortunately,

however, their solution does not seem to scale well and was only tested on instances of up

to nine nodes. In a subsequent study, Maŕın and Jaramillo (2008) incorporated an acceler-

ated Benders decomposition technique and were able to solve instances of up to 24 nodes.

More recently, Laporte et al. (2011) introduced a mixed integer optimization problem aimed

to design robust transportation systems. The objective of their approach is to guarantee the

existence of useful and fast routes even in the event of arc failures. They tested their approach

by designing the routes for a nine-station system.

After having designed the physical network (e.g., station locations and alignments), the

highest impact problem is that of route design. In the top-down approach of Ceder and

Israeli (1992), the solution of this problem (i.e., the determination of a good set of bus routes)

has a tremendous impact on subsequent tactical problems like bus frequency determination,

timetabling, and bus and personnel allocation. These tactical problems, influenced by the

designed routes and solved on a daily basis, have a direct impact on public opinion about

the BRT system and the financial structure of the bus operators. Very often, cities adopting

a BRT system lack sufficient room for expansion or simply find enlarging the network cost

prohibitive, which not only makes the route design problem even more relevant but may leave

it as the only alternative for improving BRT performance.

Because the re-emergence of BRT systems is a relatively recent endeavor, most extant

literature concentrates on the more classic problem of routing buses that move freely within

the road network while sharing it with other modes of transportation (for a review of the

bus routing problem prior to 1990, see Odoni et al. (1994) and Chua (1984)). In that sense,

the classic bus routing problem is to define which path on the road network enables buses

to best serve passenger demand. On the other hand, because the buses of BRT systems like

TransMilenio run on dedicated lanes (bus corridors), the bus paths are a predefined part of the

physical infrastructure and the route design problem is that of selecting a subset of stations

along the bus corridors at which the buses should stop.

Nonetheless, despite the differences between the classic bus routing on road networks and

the route design of BRT systems, the bus routing literature does offer relevant information and

solution techniques. Early approaches to solving the bus routing problem are based on con-

structive processes that basically assemble routes by connecting previously built fragments via

the shortest paths. One of the first techniques following this approach is the skeleton method

proposed by Silman et al. (1974), which generally starts by selecting a couple of terminal

nodes in the city outskirts and then progressively creates a bus network by inserting inter-

mediate stations based on passenger demand. Finally, it generates bus routes by connecting

shorter sections (skeletons) found by solving shortest path problems between the intermediate

stations.

Other researchers have solved the bus route design problem following a two-phase approach

that first builds a set of routes able to operate the system and then selects the final routes
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using different heuristics. For example, Mandl (1980) constructed a set of candidate routes by

solving a shortest path problem for each pair of nodes and then created routes from the pool

of candidate paths by merging those with the largest number of nodes. He included unserved

nodes by inserting them into the best position in terms of traveling time in a previously created

route.

More recently, Baaj and Mahmassani (1991) have presented a three-component method

that simultaneously solves the bus route design and bus dispatching frequency determination

problems. The first component generates sets of routes; the second one uses a tool named

Transit Routes Analyst (TRUST) Baaj and Mahmassani (1990) to compute route frequencies;

and the third and last component uses TRUST to improve the previously generated routes.

A sequel work by Baaj and Mahmassani (1995) revised the first component of the method,

integrating a hybrid heuristic focused on generating the initial set of routes. The hybrid

algorithm constructs skeletons by selecting high-demand node pairs and connecting them by

–shortest or slightly longer– paths with different nodal compositions. Finally, the skeletons are

expanded to routes based on four node insertion strategies that involve different performance

measures.

Because of the problem’s large scale, few studies have attempted mathematical program-

ming techniques for designing routes. For example, Borndörfer et al. (2007) proposed a method

based on column generation, in which they simultaneously define the routes and determine

their frequencies. Nonetheless, their work focuses on solving the route design problem for

a multimodal transportation system. A restrictive assumption in this work is the fact that

transfers between lines are ignored because they greatly increase the complexity of the model.

As stated by Borndörfer et al., handling these transfers fosters degeneracy and it remains un-

clear whether the resulting model remains tractable for practical purposes. Leiva et al. (2010)

introduced a mixed-integer nonlinear program that considers line transfers and bus capacities.

Because of the difficulty of solving the proposed formulation, the authors relaxed the nonlin-

ear constraints and embed the resulting formulation within a row generation scheme. To test

their approach, they solved the route design problem for a single-corridor BRT system with

10 stations. More recently, Feillet et al. (2010) presented a mathematical formulation for the

BRT route design problem allowing route transfers. They proposed a simultaneous column

and cut generation scheme, where the routes are systematically generated at each iteration.

The authors were able to solve the BRT route design problem for single-corridor systems of

up to to 19 stations.

Lately, some researchers have explored the use of metaheuristics for the bus route design

problem. For example, Pattnaik et al. (1998) used genetic algorithms (GAs) to simultaneously

solve the route design and frequency problems. First, after using shortest path solutions

between each pair of nodes to produce an initial set of candidate routes (cf. Mandl 1980),

they use a genetic search to find the best possible route collection for operating the system.

The information of candidate routes is encoded within each individual of the genetic algorithm

using a binary list whose routes are selected from those built using the shortest path problem.

Chakroborty (2003), in contrast, used GAs to maximize the number of passengers moved by

the system. However, unless an explicit cost or time objective is given, the proposed solutions
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tend to have more stops in every route, causing substantial delays for the passengers. Finally,

using a similar approach, Cipriani et al. (2012) attempted to minimize a weighted sum of the

operator’s costs, the users’ costs, and an additional penalty related to unsatisfied demands.

More recently, some researchers have used simulated annealing (SA) to solve the bus route

design problem. For example, Fan and Machemehl (2006) proposed an SA with an objective

function defined by the sum of the operational costs and an approximation of user costs

associated with the time spent in the system. Alternatively, Zhao and Zeng (2006) proposed

an objective function that minimizes total passenger transfers. Even though this objective

seems reasonable, the proposed solutions tend to create routes with many stops that translate

into delays. Although, it is possible to show that in some cases it is useful to use transfers to

minimize passengers’ total travel time. Finally, Fan and Mumford (2010) used hill-climbing

and SA to design routes for ordinary bus systems by first creating an initial solution by

solving shortest path problems and then running a local search improvement of the route set.

A singular feature of this work was the inclusion of the number of transfers in the objective

function together with the travel time.

For additional information regarding the route design and other related problems, see the

comprehensive surveys by Farahani et al. (2013), Guihaire and Hao (2008), Kepaptsoglou and

Karlaftis (2009), and Schöbel (2012).

Above all, most of the work in the literature on urban transit route design was originally

formulated not for BRT systems but for the bus routing problem in road networks Ceder

and Israeli (1992), Odoni et al. (1994), Chua (1984), Silman et al. (1974), Mandl (1980),

Baaj and Mahmassani (1990, 1995), Pattnaik et al. (1998), Fan and Machemehl (2006) and

unfortunately, it is not clear how to extend this methodologies to work on BRT systems. As

a result, the route design problem for a BRT system remains unsolved.

To solve the route design problem in a BRT system, we propose a mixed-integer program

(MIP) with an underlying network structure. Because of the vast number of possible routes,

finding an exact solution via branch-and-bound is a very difficult endeavor for practical size

instances; thus, we propose a decomposition strategy that, given a certain set of routes, decou-

ples the route selection decisions from the BRT system performance evaluation. To carry out

the latter evaluation, we use a large-scale linear programming technique that takes advantage

of the underlying network structure to reduce the computational time needed by conventional

optimization solvers to evaluate the performance of any given solution. To illustrate the de-

composition scheme, we present a hybrid genetic algorithm (HGA) in which each solution

is encoded in a binary genotype with multiple fragments, representing a set of routes able

to operate the BRT system. The HGA then, uses the proposed BRT system performance

evaluation as the fitness function. Additionally, we also propose a random solution generator

based on a minimum cost network flow problem that is used to generate the initial population

of the genetic algorithm. We finally used the genetic algorithm to solve 14 instances ranging

from 6 to 40 stations with different BRT system topologies.

It is important to emphasize that despite the good results, the choice of the metaheuristic is

somewhat arbitrary and should not overshadow the main contribution of this paper. In other

words, the elements proposed in this paper (i.e., the decomposition strategy, the solution
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encoding, and the solution generator) are tested using a hybrid genetic algorithm, but they

are general enough to be embedded in another optimization technique (heuristic or exact).

The remainder of this paper is organized as follows. Section 2 presents a description of the

route design problem for a BRT system and puts forward the assumptions and data require-

ments for the problem, whereas §3 presents a network-oriented model of the BRT route design

problem. Section 4 describes a decomposition strategy for solving it. Section 5 briefly discusses

an extension of the network formulation to work on BRT systems with asymmetric routes,

and §6 illustrates the proposed decomposition strategy embedded in a genetic algorithm. Sec-

tion 7 illustrates the proposed approach on a set of computational experiments adapted from

the literature and from our own experience. The hybrid approach is validated and compared

against mixed-integer programming formulations solved with commercial optimizers. Finally,

§8 concludes and outlines research currently underway.

2 The BRT Route Design Problem

In BRT systems, following the globally recognized TransMilenio model, passengers pay a single

fare at the gate of the station. Then, as in rail-based systems, they walk up a ramp toward

a doorway at which they wait for a given route (bus). Once inside the system, passengers

can travel between any pair of stations without leaving the network; however, to reach their

destination, they may need to transfer to another bus following a different route. Bus transfers

occur at intermediate stations where passengers wait for the next bus.

The stations, each associated with at least one bus corridor, are the only places in the BRT

system where buses stop and passengers get on and off. Conceptually, a bus corridor is a series

of physically connected bus lanes holding a set of adjacent stations. Routes are designed for

each bus corridor, and conversely, every bus corridor is assigned a group of routes. One very

important feature of BRT systems that follow the TransMilenio model is that buses are allowed

to pass other buses stopped at stations, giving rise to express routes (i.e., those having few

stops). To illustrate, Figure 1(a) shows the TransMilenio BRT system. It should be noted that

one station can be shared by different bus corridors and are therefore multicorridor stations.

Four such bus corridors in the TransMilenio are illustrated in Figure 1(b), while Figure 1(c)

graphically represents routes J70 and J72 along the bus corridor B-J whose two end stations

are B and J. Figure 1 clearly illustrates how the location of stops differs between both routes.

Whereas route J72 stops at 16 stations widely spread along the bus corridor, route J70 only

stops at 10 stations and by design skips stations located in the middle segment of the bus

corridor. Hence, the latter has the particular structure of an express route.

The BRTRDP involves finding a manageable set of routes and frequencies that mini-

mizes the operational and passengers costs while simultaneously satisfying system technical

constraints –coping with the OD matrix (trip distribution), fleet size, and lane capacities–

enforced so that the set of routes can satisfy demand without overcrowding the network (sta-

tions, buses, and lanes). Because of cultural issues and managerial efficiency, it is desirable to

operate the system with a limited number of routes.

Formal expression of the BRTRDP, however, requires prior understanding of the following
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Figure 1: TransMilenio BRT system operating in Bogotá (as of June, 2010)

7



considerations, data requirements, and assumptions related to different aspects of the BRT

system:

1. Solution Design. The passengers get used to the system, so it is not recommended to

change the routes very often. Routes are redesigned only when new stations or corridors

are included, or when the demand has suffered a significant change. Thus, it is not

crucial for this method to be particularly fast.

2. Time horizon. The ideal time horizon should be decided based on how much the

demand varies throughout the day. Given wide variation, the problem should be solved

for peak hours because they represent a bottleneck during which system performance

most strongly influences public opinion. The set of routes found for peak hours should

thus also be valid for off-peak hours, but with lower frequencies.

3. Origin-Destination (OD) matrix. From among the many possible techniques for

collecting and forecasting travel demand between stations, we draw on the two proposed

by Balcombe et al. (2004): surveying system users and collecting information on ticket

sales (the latter is particularly suitable when redesigning the routes). These data trans-

late readily into demand for the public transit system and can be represented by an OD

matrix in which each element contains the number of passengers willing to travel from

one system station to another during a given time horizon. According to Borndörfer

et al. (2007), the OD matrix is the simplest, standard, and most convenient way to

estimate demand in a public transit system study. However, the quality of the solution

of any model that relies on OD matrices significantly depends on the accuracy of the

data. Different techniques for the estimation and calibration of the OD matrix can be

found in Cascetta (2009) and Ortúzar and Willumsen (1994).

4. Route symmetry. For the sake of simplicity, this paper assumes that all routes are

symmetric, meaning that the route stops at the same stations in both directions. Prag-

matically, some TransMilenio-type BRT systems prefer this (symmetric) route structure

because it makes the system easy to use. However, at the end of section §5 we pro-

vide information on how to extend the proposed technique to work on systems with

asymmetric routes.

5. Passenger assignment. One critical issue while measuring the performance of a

BRT system is to estimate the preferred travel paths of the passengers and the flow

through those paths Desaulniers and Hickman (2007). Finding those paths and flows is

particularly problematic during the planning stage because there is no way to validate

against historical data. Thus, it is often the case to rely in the general assumption that all

the passengers make their travel decisions based on a common objective function Correa

et al. (2004), Desaulniers and Hickman (2007). This objective function is frequently

addressed in the literature as the minimization of the total travel time Silman et al.

(1974), Ceder and Wilson (1986), Borndörfer et al. (2007) or as the minimization of a

generalized cost function, that is, a weighted sum of different components such as the
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travel time, the waiting time, the transfer time, and the number of transfers Ceder and

Israeli (1992), Baaj and Mahmassani (1995), Fan and Machemehl (2006).

Earlier work on passenger assignment was based on the all-or-nothing Silman et al.

(1974), Mandl (1980) or common-lines Baaj and Mahmassani (1990) techniques. In

both cases, the paths and frequencies are fixed, usually as the result of a previous

stage (shortest path calculation). The main difference between both approaches is that

while in the first, all the passengers of a given OD pair are assigned to one path (i.e.,

the shortest path); in the second approach, the flows are split between common paths

according to the bus frequency (i.e., paths sharing the same cost).

More recent work on passenger assignment freely assigns the users without pre-defined

paths Borndörfer et al. (2007). Following this approach, we use a mathematical for-

mulation that simultaneously determines the passenger flow along with the frequency

determination. The advantage of this approach is that, not only the passengers are op-

timally assigned according to their objective function, but also the model can adjust the

frequencies in favor of the more congested routes. Nevertheless, to avoid nonlinearities

in the objective function, we do not consider the effect of the congestion in the stations,

passenger queues or bus bunching in the travel decisions of the passengers.

6. Multiobjective structure. Aside from the passengers’ perspective, the operational

cost is another key driver to consider while planning and operating a transportation

system Desaulniers and Hickman (2007). The operational cost is often described in the

literature as a function of the route length, the route frequency, and the cost related

to the use of the infrastructure Borndörfer et al. (2007), Fan and Machemehl (2006).

This multiobjective structure adds complexity to the problem because it often requires

a-priori articulation of the preference between both objectives, as well as the proper

estimation of the relative importance of the competing elements within each objective.

In this work, as in most of the extant literature Baaj and Mahmassani (1991), Fan

and Mumford (2010), Borndörfer et al. (2007), Fan and Machemehl (2006), we tackle

the multiobjective structure under a classical weighted-sum approach. The proposed

objective function is fully described in §3, but the question of how to calibrate those

weights is out of the scope of this paper.

7. Route transfers. Not only are route transfers allowed, they are sometimes the only

feasible way to move passengers between a given pair of stations. Hence, allowing

transfers in a BRT system helps decrease the number of stops in a route and decreases

the number of routes needed to operate the system. Nonetheless, transfers are not

instantaneous; rather, a transfer time includes the time the passenger needs to walk

inside the transfer station (between doors on a given ramp) and the wait time for the

next bus.
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3 Network Model of the BRTRDP

The mathematical formulation of the BRTRDP is based on a network representation of the

BRT system. Consider a directed graph G(N ,A), where N represents the set of nodes and A
the set of directed arcs, then let S be the set of system stations and R the set of all feasible

routes able to operate the system. There is a node for every station ns ∈ S representing

the gate to station ns; these nodes are denominated gate nodes. There is a node for every

pair (ns, rk), if the route rk stops at station ns. These nodes represent the boarding doors

on the station ns ramp at which passengers wait for a bus serving route rk; these nodes are

denominated stop nodes. Let s(ni) be the station associated with the stop node ni and N (rk)

be the set comprised of the stop nodes of route rk. Hence, N = (
⋃

rk∈RN (rk))∪S. Within a

station ns there is an arc between every pair of stop nodes and an arc between the gate node

and every stop node. These arcs are denominated station arcs, are denoted A(ns) for station

ns and model the movement of the passengers inside the station. For every route rk, there is a

set of arcs A(rk) connecting the stop nodes N (rk) following the sequence defined by the route.

These arcs are denominated route arcs and model the physical movement of a bus between

stops through busways based on the sequence defined by the route. Then, A = (
⋃

rk∈RA(rk))∪
(
⋃

ns∈S A(ns)). Consider the network representation for a four-station BRT system with one

bus corridor illustrated in Figure 2. Here, set R = {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11} listed

in Figure 2(a), which shows all possible routes for this BRT system, exclude the infeasible

routes like nonstop or single-stop routes. Additionally, set S = {n1, n2, n3, n4} contains all

gate nodes. In Figure 2(b), which details the subnetwork corresponding to the stations,

because routes r1 through r7 stop at station n1, the corresponding subnetwork contains the

(ns, rk) nodes n(n1,r1), n(n1,r2), n(n1,r3), n(n1,r4), n(n1,r5), n(n1,r6), and n(n1,r7). Thus, for instance,

s(n(n1,r2)) = n1. Figure 2(c) then shows the resulting BRT network after the expansion of

the station subnetworks and addition of the route arcs. Note that the route arcs presented

in the figure actually represent two directed arcs in both directions; for example, route r10
(red) only stops at stations n2 and n4, then, N (r10) = {n(n2,r10), n(n4,r10)} and A(r10) =

{(n(n2,r10), n(n4,r10)), (n(n4,r10), n(n2,r10))}.
Two types of costs are considered: the passenger cost of using the BRT system and the

BRT’s operational costs. Let cij be the cost (e.g., time) that a passenger incurs when traversing

arc (ni, nj). If this arc (ni, nj) is a station arc, then cij represents the walking time from the

gate to a boarding door, from a boarding door to the gate, or the transfer time (the walking

time between boarding doors plus the average wait) time for the next bus. If arc (ni, nj) is

a route arc, then cij represents the time the bus takes to travel between two successive stop

nodes; this time is assumed to be departure independent of the route, i.e., it only depends

on the departure and arrival stations. We also denote this travel time between stations s(ni)

and s(nj) by cs(ni)s(nj). Let gk be a fixed cost of operating route rk and hk be the cost of

allocating a bus to serve route rk. Let bod be the number of passengers willing to travel from

station no to station nd (i.e., the (o, d) element of the OD matrix). From this value, bodi is

defined for every node ni, where bodo = bod, bodd = −bod, and bodi = 0 otherwise. It should be

noted that stop nodes act as transshipment nodes. Let Q be the number of buses available to
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Station 1 Station 2 Station 3 Station 4

(c) Full network representation

Figure 2: Example of a four-station BRT system
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serve the BRT system and u be the passenger capacity of each bus. For the sake of simplicity,

we assume that the fleet of buses is homogeneous (i.e., all the buses have the same capacity).

Let qk be the maximum number of buses that could be allocated to route rk and m be the

maximum number of routes that the BRT operator is able to manage. Let xodij be a decision

variable that represents the flow through arc (ni, nj) of passengers willing to go from station

no to station nd. Let yk be a decision variable that takes the value of 1 if route rk is selected

to operate the BRT system; it takes the value of 0 otherwise. Finally, let fk be the number of

buses allocated to serve route rk (i.e., frequency). Then, the BRTRDP is as follows:

min α


 ∑

(ni,nj)∈A
cij
∑

no∈S

∑

nd∈S
xodij


+ β

(∑

rk∈R
(gkyk + hkfk)

)
(1)

s.t.

∑

{nj :(ni,nj)∈A}
xodij −

∑

{nj :(nj ,ni)∈A}
xodji = bodi , ni ∈ N , no ∈ S, nd ∈ S; (2)

∑

no∈S

∑

nd∈S
xodij ≤ ufk; rk ∈ R, (ni, nj) ∈ A(rk) (3)

fk ≤ ykqk, rk ∈ R; (4)∑

rk∈R
yk ≤ m; (5)

∑

rk∈R
fk ≤ Q; (6)

yk ∈ {0, 1}, rk ∈ R; (7)

fk ≥ 0, rk ∈ R; (8)

xodij ≥ 0, no ∈ S, nd ∈ S, (ni, nj) ∈ A; (9)

where the objective function (1) simultaneously minimizes the passenger travel cost and the

operational cost of the BRT system. Note the existing compromise between both objectives,

that is, minimizing the passenger travel cost would result in a larger number of routes and

buses serving the BRT, which implies a deterioration on the revenue for the operator. For this

reason, scalar weights α and β are used to combine both objectives under a classical weighted-

sum approach (a-priori articulation of preferences). Balance constraints (2) guarantee that all

passengers reach their destination. Capacity constraints (3) force the flow of passengers for

every arc to be less than the combined capacity of the buses allocated to serve a given route.

Constraints (4) ensure that if a route is selected to operate the system, the buses allocated

to serve such route do not exceed the maximum allowed. Constraint (5) guarantees that the

number of selected routes does not exceed a manageable limit set by the BRT system operator.

Finally, constraint (6) bounds the number of buses.

Even though the model defined by (1–9) fully describes the BRTRDP, solving it is unfortu-

nately a difficult task. The BRTRDP falls into a broader category of complex problems known

12



as network design problems, comprised among others by the fixed-charge network design prob-

lem Magnanti and Wong (1984), the capacitated network design problem Balakrishnan et al.

(1997), and the capacitated multicommodity network design problem Frangioni and Gendron

(2009), all of them proven to be NP-hard.

We now outline how the capacitated multicommodity network design problem (CMND),

is polynomially reducible to the BRTRDP. From the CMND formulation Ghamlouche et al.

(2003) we can associate each arc (ni, nj) of its underlying network with a route rk, thus we

are able to rewrite variables yij as yk for every arc (ni, nj) such that A(rk) = {(ni, nj)}. Then,

after fixing the parameters α = 1, β = 1, gk = 0, m = ∞, and Q = |A|; and eliminating

the redundant constraints in the BRTRDP formulation (1–9), the resulting problem is indeed

an instance of the CMND, proving that the BRTRDP is in fact an NP-hard problem. As

a result, approaches to tackle the BRTRDP or any other network design problem rely on

heuristic techniques to solve practical instances of reasonable size Ghamlouche et al. (2003).

Aside from its worst-case analysis, note that the size of the BRTRDP defined by (1–9)

in terms of the number of variables and constraints is intimately tied to the set of routes R.

Moreover, due to the combinatorial structure of the problem the total number of routes is

O(2|S|). Since for every route rk the underlying network contains the sets of stop nodes N (rk)

and route arcs A(rk), thus the number of constraints (2–6) and variables grows exponentially

with the number of stations. This implies that in order to solve the proposed model defined

by (1–9), it is necessary to solve a problem with an extremely large number of constraints and

variables. Indeed, this number could be huge even for small instances (see § 7).

4 Decomposition Strategy for the BRTRDP

The BRTRDP defined by (1–9) is undoubtedly a hard large-scale optimization problem. Even

small-sized instances are out of reach for commercial branch-and-bound based optimizers.

However, if somehow the set of routes that serves the BRT system is fixed, the size of the

network reduces dramatically and the resulting problem becomes well defined. In other words,

the problem is reduced to the evaluation of the BRT system given that set of routes. Formally,

the idea is to select a small collection of routes R′ ⊂ R (|R′| << |R|), fix the corresponding

yk variables to 1 for every route rk ∈ R′ (and yk ← 0 for all rk ∈ R \ R′), construct a

graph G′(N ′,A′) by pruning nodes and arcs in G given R′, and find the overall cost of the

resulting BRT system. To evaluate the performance of the BRT system, given a set of routes

represented by y, we solve the following linear optimization problem:

f(y) = min α


 ∑

(ni,nj)∈A′

cij
∑

no∈S

∑

nd∈S
xodij


+ β

(∑

rk∈R′

hkfk

)
(10)

s.t.
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∑

{nj :(ni,nj)∈A′}
xodij −

∑

{nj :(nj ,ni)∈A′}
xodji = bodi , ni ∈ N ′, no ∈ S, nd ∈ S; (11)

∑

no∈S

∑

nd∈S
xodij ≤ ufk, rk ∈ R′, (ni, nj) ∈ A(rk); (12)

fk ≤ qk, rk ∈ R′; (13)∑

rk∈R′

fk ≤ Q; (14)

xodij ≥ 0, no ∈ S, nd ∈ S, (i, j) ∈ A′; (15)

fk ≥ 0, rk ∈ R′. (16)

Note that, since most of the nodes and arcs were pruned when fixing variables y, the model

defined by (10–16) is significantly smaller than the BRTRDP formulation (1–9). Moreover,

because all the variables in the model are continuous, this is in fact a linear optimization

model, which theoretically can be solved in polynomial time. Additionally, note that this

model closely resembles a multicommodity network flow problem (MCNF) in which each

commodity represents passengers traveling from station no to station nd. Despite the extra

variables fk, we can successfully take advantage of the MCNF structure, via the decomposition

principle. The most important implication of this formulation is that, thanks to its structure,

it is possible to evaluate in a relatively short time how well the BRT system will perform given

the set of routes defined by y.

To solve the problem defined by (10–16), we use a variant of the decomposition principle

proposed by Tomlin (1966) originally conceived to solve MCNF problems. There are also

other solution approaches suggested in the literature McBride (1998), Ahuja et al. (1993) that

could be adapted to solve the problem. The decomposition principle allows the acceleration

of the solution process by taking advantage of the problem’s internal network structure. The

decomposition principle splits the original problem in two, giving rise to a master and an

auxiliary problem. In a given iteration, the auxiliary problem provides the master problem

with possible paths, the master problem then receives these paths, builds a new basis, and

returns the dual pricing to the auxiliary problem so it can declare optimality or construct

other paths if necessary.

The master problem is defined as follows. Let Pod be the set of all possible paths that

satisfy the balance constraints (11) for the pair of stations (no, nd) ∈ S × S. Let wijp be the

flow of passengers through the arc (ni, nj) ∈ A′, in the path p ∈ Pod. Let λodp be a multiplier

associated with the pth path p ∈ Pod. Hence, the master problem is as follows:

f(y) =min α


 ∑

(ni,nj)∈A′

cij
∑

no∈S

∑

nd∈S

∑

p∈Pod

λodp wijp


+ β

(∑

rk∈R′

hkfk

)
(17)

s.t.
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∑

no∈S

∑

nd∈S

∑

p∈Pod

λodp wijp ≤ ufk, rk ∈ R′, (ni, nj) ∈ A(rk); (18)

∑

rk∈R′

fk ≤ Q; (19)

fk ≤ qk, rk ∈ R′; (20)∑

p∈Pod

λodp = 1, no ∈ S, nd ∈ S; (21)

λodp ≥ 0, no ∈ S, nd ∈ S, p ∈ Pod; (22)

fk ≥ 0, rk ∈ R′; (23)

where the objective function of the master problem (17), as in the original problem, is to

minimize the passenger travel cost and the operational cost of the BRT system; the inequalities

(18) represent the arc capacity constraints; relations (20) ensure that the buses allocated to

serve the routes do not exceed the maximum allowed; constraint (19) bounds the number of

buses; and equations (21) represent the convexity constraints for every pair of stations (no, nd).

Note that the set of variables fk in the master problem is fixed over the iterations, since it

only depends on the set of routes R′ that is being evaluated by the algorithm. On the other

hand, the sets Pod grow with the paths built by the auxiliary problem at each iteration.

The auxiliary problem is separable with a diagonal block structure in which each block

relates to the passenger flow between a pair of stations (no, nd). Let πk
ij be the dual variables

of the capacity constraints of arc (ni, nj) ∈ A(rk) (18) and γod be the dual variable associated

with the convexity constraint (21) for the pair (no, nd). The auxiliary problem (block) for the

passengers (no, nd) is defined by:

min
∑

(ni,nj)∈A′

(
αcij −

∑

rk∈R′

πk
ij

)
xodij − γod (24)

s.t. ∑

{nj :(ni,nj)∈A′}
xodij −

∑

{nj :(nj ,ni)∈A′}
xodji = bodi , i ∈ N ′; (25)

xodij ≥ 0, (ni, nj) ∈ A′; (26)

where the set of constraints (25) guarantees that the offer and demand for passengers (no, nd)

is met in every node. Since there is no limit on passenger flow (no, nd), this problem can be

solved by pushing all the (no, nd) flow through the shortest path. Hence, the solution to this

problem can take advantage of a specialized algorithm.

The optimality conditions can be written as follows:

∑

(ni,nj)∈A′

(
αcij −

∑

rk∈R′

πk
ij

)
xodij ≥ γod, (no, nd) ∈ S × S. (27)

If these conditions are met, it means that there are no more paths that decrease the overall

cost, thus, the current solution in the master problem is optimal.
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To solve the BRTRDP, the proposed performance evaluation tool defined by (10–16) can

be embedded within an optimization framework working on a solution space comprised of the

set of routes able to operate the BRT system. In Section § 6, we illustrate such an optimization

scheme based on a genetic algorithm that uses the previous model derived in this section as a

fitness function. Nonetheless, other effective search mechanisms in combinatorial optimization

(e.g., a tabu search) can also take advantage of the same decomposition approach presented

here.

5 Extension to the Network Formulation to Asymmet-

ric Routes

The network formulation can be extended to work on BRT systems with asymmetric routes,

that is, routes that do not stop at the same stations in both directions. To model asymmetric

routes, first, for every route we define a traveling direction along the corridor. For example

in Figure 2 the two possible directions are 1–4 and 4–1. The network is built as before, but

every stop node is duplicated to account for each traveling direction. Additionally, for every

route rk, the set of route arcs A(rk) is now comprised only by the arcs following the direction,

that is, either (ni, nj) or (nj, ni), but not both. Note that under this approach, handling both

directions doubles the number of candidate routes, thus affecting the size of the optimization

model. Figure 3 shows an example of the network representation for the same four-station

system used in Figure 2. For the sake of clarity, we display only four from the whole set of

22 set of candidate routes (the same 11 routes described in Figure 2, but in both directions).

Note that even though routes r1 and r2 stop at the same stations, they travel in different

directions.

(1,2)n1 (1,2)n2 (1,2)n3 (1,2)n4

Route 10r1

Route 20r2

Route 30r3

Route 40r4

(a) Sample of four asymmetric routes

(b) Network representation of the sampled routes

Figure 3: Example of a four-station BRT system with asymmetric routes
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6 Hybrid Genetic Algorithm

Genetic algorithms Goldberg (1989) are stochastic search procedures inspired by the principles

of natural selection. In any given generation (i.e., iteration), genetic operators combine and

alter a population of solutions that undergoes an evaluation and selection process in which

the fitter individuals (i.e., solutions) are more likely to survive. To improve the convergence of

genetic algorithms, some researchers have explored hybrid genetic algorithms, which, in a strict

sense, are those composed of simple algorithms Black (2004). However, because there appears

to be no general agreement on the use of the term hybrid, we use it here in the sense of decoding

a chromosome (solution encoding) and evaluating its fitness by means of an exact algorithm.

Even though this approach might seem related to what some authors call hybrid genetic

algorithms Whitley (1995), Cheng et al. (1999), other researchers prefer the term memetic

algorithms to emphasize the use of (local) search procedures to intensify the genetic search

Moscato (1999). In our view, the proposed approach can also be seen as a matheuristic, a

term that has been recently coined to emphasize the cross-fertilization (hybridization) between

mathematical programming and metaheuristics Caserta and Voß (2010). Hence, this section

describes the key components of the proposed hybrid genetic algorithm, hereafter called HGA.

6.1 Solution encoding (genotype).

Each individual represents a collection of maximum m routes able to operate the system. The

routes allocated to a given bus corridor are coded in a list of binary arrays with each array

representing a route in which each bit represents a station in the bus corridor. A bit with

a value of 1 indicates that the route stops at the corresponding station, whereas a value of

0 indicates that the route does not stop. It should be noted that in the illustration of a 7-

station BRT system with two bus corridors shown in Figure 4, the number of routes assigned

to each bus corridor could differ between individuals. In fact, such solution encoding allows

the possibility that a bus corridor might even end up with no routes allocated after a number

of iterations.

6.2 Fitness function.

The key feature of this proposed genotype is that, because the binary variables y described

in §3 are coded in the individual, the fitness of an individual can be obtained by simply

solving the problem defined by (10–16) instead of the complex mixed-integer program (MIP)

described by (1–9). For this purpose, we used the decomposition strategy presented in Section

§4.

6.3 Initial population.

A set of routes R′ with cardinality m′ ≤ m is randomly assigned to every individual in the

initial population. Each route rk ∈ R′ is associated with a bus corridor c ∈ C, where C is

the set of bus corridors in the system. To generate routes for a new individual, we define a
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1 2 3 4 5 6

7

Bus corridor 1-6

Bus corridor 7-6

(a) System description

Individual 1

Bus corridor 1–6

1 2 3 4 5 6

1 0 1 0 0 1

0 1 0 0 0 1

1 1 1 1 1 1

Bus corridor 7–6

7 3 4 5 6

1 0 1 0 1

1 0 0 0 1

Individual 2

Bus corridor 1–6

1 2 3 4 5 6

1 1 1 1 1 1

0 1 0 0 0 1

Bus corridor 7–6

7 3 4 5 6

1 0 0 0 1

0 1 1 1 0

(b) Genotype

Figure 4: A 7-station example

minimum cost flow problem (MCF) on a directed graph, where route stops are the units that

flow through the network.

Let the fraction ρ(c) of routes assigned to bus corridor c be proportional to the number of

stations s(c) in the bus corridor as defined by ρ(c) , s(c)/
∑
c′∈C

s(c′). Let δ(rk) be a function

that returns the bus corridor of a given route rk. For example, if route rk is assigned to bus

corridor c, then δ(rk) = c. There is a route node for every rk ∈ R′ (m′ route nodes in total);

a station node for every ns ∈ S; and two nodes f and d denominated source and sink nodes,

respectively. The source node pushes all the units (route stops) through the network, while

the sink node absorbs them. There is an arc between the source node f an every route node rk,

all which are denominated corridor-route arcs and grouped in set A(f). Likewise, there is an

arc between each route node rk and every station node in bus corridor c = δ(rk), denominated

route-stop arcs and further grouped in set A(c) and if a unit flows through this arc, it means

that route rk stops at station ns. Finally, there is an arc between every station node ns and

the sink node d, all denominated station-stop arcs and grouped in set A(d). Figure 5 presents

an example for the 7-station BRT system previously presented in Figure 4(a).

Let l(rk) and u(rk) be the lower and upper bounds associated with the flow on arc (f, rk) ∈
A(f), they represent the minimum and maximum number of stops of route rk. To be feasible,

the number of stops in a route must fall between two and the number of stations along the
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Figure 5: Example of the underlying minimum cost flow network for the initial population

(m′ = 5)

bus corridor, meaning l(rk) , 2 and u(rk) , s(δ(rk)). The cost associated with the arcs

in A(f) is zero. For every (rk, ns) ∈ A(δ(rk)), let cks(ω) be the cost of allocating a stop

at station ns in route rk, where ω is a random effect that is responsible for the diversity of

the newly generated individuals and might therefore take negative values and be different for

each (rk, ns) ∈ A(δ(rk)). Every arc (rk, ns) ∈ A(δ(rk)) has lower and upper bounds of 0 and

1, respectively, which guarantee that at most one stop is allocated at any station in a given

route. Let l(ns) and u(ns) be the lower and upper bounds on the flow of arc (ns, d) ∈ A(d),

they control the minimum and maximum number of stops allocated at station ns regardless

of the bus corridor. It should also be noted that higher values on the bounds help with

the connectivity of the BRT network and thus with the feasibility of the individual (e.g.,

l(ns) ≥ 1). The cost associated with flowing through arc (ns, d) ∈ A(d) is zero. Finally, there

is an arc between node d and node f that represents the total flow within the network. The

cost associated with using this arc is also zero, and its lower and upper bounds are zero and∑
rk∈R′

u(rk), respectively.

Here, the objective is to minimize the total cost associated with the allocation of stops to

stations, while satisfying flow capacity constraints. Moreover, since every node in the network

is a transshipment node, the MCF problem can be seen as a circulation problem Ahuja et al.

(1993).
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6.4 Genetic operators and selection.

Since the routes allocated to each bus corridor are coded in a list of binary arrays, we can

apply classical genetic operators like bit flipping mutation (on a randomly selected route)

and two-point crossover Michalewicz (1996). It should be noted that applying a two-point

crossover Michalewicz (1996) to a couple of routes r1 and r2 allocated to a given bus corridor

c produces two routes r′1 and r′2. Figure 6 shows an example of two routes generated by

applying the two-point crossover operator after the first and third positions of the binary

arrays. Given a specific bus corridor, we apply the crossover operator as many times as the

least number of routes present in one of the two parents. That is, assuming that parent p1
has less routes allocated to corridor c than parent p2, we select each route from p1 and cross

it with a randomly selected route from p2. We apply the same procedure to every corridor.

1 2 3 4 5

r1: 1 0 1 0 1

r2: 0 1 1 1 0

r′1: 0 0 1 1 0
r′2: 1 1 1 0 1

Figure 6: Example of the two-point crossover

Because of the routes’ binary structure, the genetic operators are likely to produce individ-

uals with the same fitness (clones), which is particularly critical in small-sized instances where

such behavior may cause premature convergence to local optima. To avoid this problem, we

use a tournament selection operator Miller and E. (1995) forbidding the selection of clones at

each iteration.

7 Computational Experiments

The HGA was coded in Java Genetic Algorithm (JGA) Medaglia and Gutiérrez (2007), a

publicly available Java-based object-oriented framework for solving optimization problems

using evolutionary algorithms. JGA allows the user to focus on the specific application

logic by reusing a set of built-in components. As shown in Figure 7, to implement the pro-

posed algorithm in JGA, we extended the framework by coding the chromosome’s genotype

(BRTRDPGenotype), the fitness function evaluator (BRTFitnessFunction), the initial popula-

tion procedure (MCFInitialization), the selection mechanism (TournamentSelection), and

the crossover and mutation operators (BRTRDPCrossover, BRTRDPFlipMutation).

We solved both the model embedded in the fitness function evaluator and the MCF in the

initial population generation procedure by connecting the corresponding Java component to

the Xpress-MP optimizer, version 19.00.00.

To fine tune the HGA parameters, we conducted an experiment on a medium sized 21-

station instance to explore the impact on solution quality of different levels of population
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Figure 7: Implementation of the Genetic Algorithm in JGA

size (P = 20, 30, 50 ), maximum number of generations (N = 100, 200, 500), crossover rate

(pc = 0.2, 0.3, 0.7), and mutation rate (pm = 0.05, 0.08, 0.10). Figure 8 reports the gap (in %)

with respect to the best solution on each of the 81 (= 3× 3× 3× 3) parameter combinations.

Based on these gaps, where the bright areas are preferred over the dark areas, we fixed pc = 0.3

and pm = 0.1 while selecting parameters P and N dependent on problem size. For the larger

instances we fix P = 30 and N = 200. We conducted this experiment using JG2A Bernal et al.

(2009), an extension of JGA for computational grid environments; however, owing the diverse

computational environment (one Dell OptiPlex 755 with an Intel Core Duo CPU running at

3.00GHz with 4 GB of RAM on Windows XP Professional; six Dell GX280-SD with an Intel

Pentium IV CPU running at 2.5GHz with 512 MB of RAM on Windows XP Professional;

and one Dell PowerEdge with an Intel Xeon Woodcrest 5120 processor with 4 GB of RAM on

Windows Server 64 bits), we do not report the CPU time.

We tested the performance of the HGA by solving a set of 14 instances ranging from 5 to

40 stations. Instances 1 and 2 were adapted from two networks proposed by Maŕın (2007),

representing a 6-station BRT system with 2 bus corridors (MAR-C2-S6) and a 9-station BRT

system with 3 bus corridors (MAR-C3-S9). Instances 3 to 9 represent a BRT system with
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Figure 8: Effect of P , N , pc, and pm on the solution quality on a 21-station BRT system

one bus corridor and 5, 6, 7, 8, 9, 10, and 25 stations, labeled BRT-C1-S5, BRT-C1-S6,

BRT-C1-S7, BRT-C1-S8, BRT-C1-S9, BRT-C1-S10, and BRT-C1-S25, respectively. Instance

10 represents a more complex 13-station BRT system with two bus corridors (BRT-C2-S13).

Instance 11 is a triangular-shaped BRT system comprised by 33 stations and 3 bus corridors,

labeled BRT-C3-S33. Instance 12 is a scaled representation of the TransMilenio BRT system

with 10 bus corridors and 21 stations (BRT-C10-S21). Instance 13 labeled MIO-C3-S37, is

a representation of the Mı́o, the BRT system of the city of Cali (one of the largest cities in

Colombia); it has 37 stations and 3 of its most representative bus corridors. Finally, instance

14 is the largest instance with 3 corridors and 40 stations, labeled (BRT-C3-S40). The diversity

of the topologies captured by this set of instances is shown in Figure 9. We performed the

computational tests on a Dell Precision T7400 with an Intel Xeon CPU X5450 running at

3.00GHz with 8 GB of RAM on Windows Vista Ultimate.

For benchmark purposes, we calculated a dual bound based on the linear relaxation (LR)

of the BRTRDP formulation proposed in §3 (1–9) using Xpress-MP 19.00.00 and CPLEX

12.1.0. For each instance, Table 1 reports the size of the underlying network in terms of the

number of stations, bus corridors, and routes; as well as the problem size in terms of number

of variables and constraints of the linear relaxation, its optimal value, and the elapsed time in

seconds used by Xpress-MP and CPLEX to solve it. Because of the huge size of instances 9 to

14, neither Xpress-MP nor CPLEX could construct the linear relaxation problem. Notice the

exponential number of variables and constraints as the number of stations and bus corridors

increase.

For instances 1–12, we conducted 10 independent runs of the HGA, while for instances 13

and 14 we conducted 5 independent runs. Table 2 shows the HGA settings for the population

size P and the maximum number of generations N , the best solution reported by the HGA,

the average CPU time, and the gap between the best value of HGA and the linear relaxation

(optimistic bound). For instances 1 through 6, the HGA consistently achieved the same

solution in every run, while for instances 7, 8, 9, 10, 11, 12, 13, and 14 it found average gaps

with respect to the best solution of 0.0016%, 0.0087%, 0.0139%, 0.0001%, 0.0061%, 0.0049%,

0.2083%, and 0.0094%, respectively. To check the overall quality of the best solution found by
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Figure 9: Topologies of the BRT systems in the testbed

23



Table 1: Problem size and linear relaxation information for the 14 instances
Instance Problem size CPU time (s)

No Label |S| |C| |R| Variables Constraints LR Xpress-MP CPLEX

1 MAR-C2-S6 6 2 15 10,410 1,351 240,264 0.01 0.02

2 MAR-C3-S9 9 3 34 113,108 7,498 553,762 0.70 0.40

3 BRT-C1-S5 5 1 26 5,012 1,726 752,380 0.01 0.01

4 BRT-C1-S6 6 1 57 19,014 6,077 863,576 0.05 0.08

5 BRT-C1-S7 7 1 120 64,248 19,580 925,392 0.71 0.47

6 BRT-C1-S8 8 1 247 200,414 59,131 988,631 2.58 2.84

7 BRT-C1-S9 9 1 502 589,676 169,978 1,062,204 15.65 20.73

8 BRT-C1-S10 10 1 1,013 1,659,286 470,009 1,119,764 177.56 273.88

9 BRT-C1-S25 25 1 ≈ 3× 107 ≈ 4× 1018 ≈ 3× 1011 – –

10 BRT-C2-S13 13 2 304 ≈ 2× 107 ≈ 3× 106 – – –

11 BRT-C3-S33∗ 33 3 12,249 ≈ 2× 107 ≈ 2× 107 – – –

12 BRT-C10-S21∗ 21 10 2,701 ≈ 3× 108 ≈ 9× 105 – – –

13 MIO-C3-S37∗ 37 3 ≈ 1× 109 ≈ 7× 1021 ≈ 1× 1013 – – –

14 BRT-C3-S40∗ 40 3 ≈ 3× 107 ≈ 4× 1018 ≈ 1× 1011 – – –

* The number of variables and constraints were calculated based on the size of each bus corridor.

HGA, we compared it against the dual bound obtained by the linear relaxation. For instances

1 through 8, the average gap with respect to the linear relaxation was 0.10%, and never greater

than 0.20%. Even though those instances may be considered small, the gaps of less than 1%

provide some evidence that this good performance could scale to larger instances, for which

no good bounds are known. In addition, in terms of solution time, the HGA has also proven

robust. We found that the average coefficient of variation in the time spent by the algorithm

was 0.0567, meaning that, regardless of the random stream, the elapsed time is consistently

the same.

We finally tested whether the solutions found were indeed optimal. Therefore, we directly

solved the MIP of the BRTRDP formulation proposed in §3 (1–9) for instances 1 to 8 (i.e., the

instances for which the optimizers were able to solve the linear relaxation) using Xpress-MP

19.00.00 and CPLEX 12.1.0. We set the maximum running time of the optimizers to 12 hours,

almost 160 times the time spent by the HGA to solve the largest of the 8 instances. As Table

3 shows, Xpress-MP and CPLEX both reached the optimal solution for instances 1, 2, 3, and

4 in less than 80 seconds. Remarkably, HGA also obtained the same optimal solution in every

run within a reasonable time (ranging from 2.778 to 29.281 seconds on average). However,

for the remaining instances, none of the optimizers could find the optimal solution within the

time limit. For instances 5 and 6, the HGA was able to find the same solution found by the

optimizers, but we cannot guarantee that the solution is optimal since the optimizers were

not able to close the gap. For instances 7 and 8, the HGA was 0.016% and 0.431%, better,

respectively, than the best solution found by Xpress-MP. For those instances, CPLEX found

no integer solution within the allowed time limit.

Finally, Figure 10 shows a graphical representation of the solutions found by the HGA for

instances BRT-C1-S10, BRT-C2S13, and MIO-C3-S37, including the stops and the number

of buses allocated to serve each route. Additionally, Table 4 presents the OD matrix for the

BRT-C1-S10 system, where the high-demand (o, d) pairs are in bold.
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Table 2: Performance of HGA and comparison with the Linear Relaxation
HGA Average Gap

Instance P N best time (s) (LR-HGA best) %

1 5 100 240,353 2.78 0.03%

2 10 100 554,154 16.70 0.07%

3 10 200 752,672 8.42 0.04%

4 20 200 864,346 29.28 0.09%

5 30 200 926,371 72.56 0.11%

6 30 200 989,771 122.84 0.12%

7 30 200 1,063,991 193.79 0.17%

8 30 200 1,121,948 276.85 0.20%

9 30 200 93,394,080 22,068.05 –

10 30 200 58,904,536 596.60 –

11 30 200 215,677,088 25,360.37 –

12 30 200 183,861,728 17,561.27 –

13 30 200 405,040,576 146,729.84 –

14 30 200 347,142,432 79,297.08 –

Table 3: Performance of HGA against the MIP optimizers Xpress-MP and CPLEX with the

time limit of 43,200 seconds
Xpress-MP Gap (HGA best- CPLEX Gap (HGA best-

Instance Best integer Time (s) Xpress-Mp) % Best integer Time (s) CPLEX) %

1 240,353 0.31 0.000% 240,335 0.22 0.000%

2 554,154 72.16 0.000% 554,154 25.43 0.000%

3 752,672 0.42 0.000% 752,672 0.33 0.000%

4 864,346 7.33 0.000% 864,346 8.47 0.000%

5 926,371 43,200.00 0.000% 926,371 43,200.00 0.000%

6 989,779 43,200.00 0.000% 989,771 43,200.00 0.000%

7 1,064,159 43,200.00 0.016% – 43,200.00 –

8 1,126,784 43,200.00 0.431% – 43,200.00 –

Table 4: OD matrix for the BRT-C1-S10 system
OD 1 2 3 4 5 6 7 8 9 10

1 0 2 5 27 3 3 11 7 2 1

2 3 0 2 24 18 5 58 21 26 0

3 5 3 0 5 8 6 62 19 15 3

4 43 149 20 0 0 10 256 196 264 57

5 3 17 3 8 0 0 10 2 14 0

6 4 9 8 17 0 0 1 5 3 10

7 26 106 79 227 5 2 0 0 18 8

8 5 36 26 151 7 0 4 0 0 0

9 7 19 23 233 21 4 8 0 0 1

10 1 3 4 49 12 4 15 2 1 0
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Figure 10: Solutions found by the HGA

For the case of the BRT-C1-S10 system, note that the segments without stops in routes 2

and 3 significantly benefit passengers willing to travel between the stations with high demands.

For example, the 497 passengers traveling between stations 4 and 9 (i.e., 264 from station 4 to

station 9 and 233 from station 9 to station 4) can expedite their travel without intermediate

stops by using route 2. A similar situation occurs between stations 4 and 7 on route 3. On

the other hand, route 1 stops at every station to cover lower demand o-d pairs. This expected

behavior has been observed in other BRT systems with different topologies. Regardless of the

instance, note that there is always a route that stops at every station in each bus corridor;

and, when there are multiple routes allocated to a bus corridor, they try to cover different

stations, complementing each other. For instance, see routes 4 and 5 of the bus corridor 1-37

in the solution for the MIO-C3-S37.

In terms of frequencies, for the case of the MIO-C3-S37 system, the number of buses

allocated to the 6 proposed routes were 19.12, 28.65, 21.29, 8.52, 9.97, and 27.90, respectively;
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using about 116 out of the 150 available buses. Furthermore, since the OD matrix was built

using a three-hour peak in the morning, buses serving those routes should be dispatched

roughly every 9, 6, 8, 21, 18, and 6 minutes, respectively.

8 Concluding Remarks

This study was motivated by the ever-increasing interest of city planners in adopting BRT

systems as competitive alternatives to rail-based systems. Owing to the vast success of systems

like TransMilenio in Bogotá, many cities have been rapidly adopting this type of public transit

system. However, eventually, BRT system operators face the problem of (re)designing the bus

routes to increase system efficiency and overall user satisfaction.

To address this problem, we formulate the Bus Rapid Transit Route Design Problem

(BRTRDP) as a MIP with an underlying network structure. However, because this problem’s

direct solution is out of reach for practical size problems, we propose a decomposition strategy

that, given a set of routes, decouples the route selection decisions from the BRT system

performance evaluation. This evaluation is solved using a large-scale linear programming

technique that reduces the computational time needed to evaluate the performance of any

given solution. To illustrate the decomposition scheme, we present a hybrid genetic algorithm

(HGA) in which each solution is encoded in a binary genotype with multiple fragments,

representing a set of routes able to operate the BRT system.

To test the HGA’s performance, we solved 14 instances: two adapted from the literature

and 12 emulating realistic BRT systems. Two of the largest instances are a 21-station scaled

version of the widely popular TransMilenio BRT system and a 37-station built from 3 repre-

sentative bus corridors of the Mı́o BRT system of Cali (Colombia). The HGA reached very

accurate solutions for all instances, and in 8 out of 14 problems obtained a provably optimal

solution within less than 0.2% of a strong dual bound. In 4 out of 14 instances, the HGA

obtained the optimal solution.

We believe that, beyond its genetic search features, this application of the HGA has shown

that the proposed decomposition strategy can successfully tackle real-sized instances of the

BRTRDP. Moreover, the same decomposition strategy could easily be embedded into another

metaheuristic framework such as a tabu search or variable neighborhood search.

Research is currently underway to improve the execution time of the fitness evaluation

procedure by implementing a specialized shortest path algorithm.
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